Exercise 8 - solution

Paul Blanche

Exercise A

Question 1

We first load the data and look at the first lines.

rm(list=1s()) # clear R memory
load(url("http://paulblanche.com/files/HFollicles.rda"))
d <- HFollicles

head(d)

## Disease Age Patient Treatment Transport Day0 Day?2 Day4
## 1 Breast_cancer 31.6 1 FBS Yes 101.4590 112.1605 135.1980
## 2 Breast_cancer 31.6 1 FBS Yes 89.8315 141.3770 165.4925
## 3 Breast_cancer 31.6 1 FBS Yes 90.2835 116.9870 122.6500
## 4 Breast_cancer 31.6 1 FBS Yes 120.3145 148.8840 166.9970
## 5 Breast_cancer 31.6 1 FBS Yes 93.0085 112.3135 120.8550
## 6 Breast_cancer 31.6 1 FBS Yes 73.0530 89.5760 106.5460
## Day6 Day8

## 1 160.2315 161.500

## 2 NA NA

## 3 127.7305 129.447

## 4 170.0245 170.740

## 5 120.9000 120.940

## 6 108.6700 109.947

Question 1.a

We first make the necessary data management to follicle growth at day 6, similarly to what
has been done to study follicle growth at day 8 in the R-demo.

whichDay <- 6

d$growth <- d[,paste0("Day",whichDay)]-d$Day0

d$loggrowth <- log(d$growth,base=2)



d$logDay0 <- log(d$DayO,base=2) - log(75,base=2)
d$PatientID <- factor(d$Patient)

d$Treat <- factor(d$Treatment)

head(d,n=10) # quick check

#i# Disease Age Patient Treatment Transport DayO Day2 Day4
## 1 Breast_cancer 31.6 1 FBS Yes 101.4590 112.1605 135.1980
## 2 Breast_cancer 31.6 1 FBS Yes 89.8315 141.3770 165.4925
## 3 Breast_cancer 31.6 1 FBS Yes 90.2835 116.9870 122.6500
## 4 Breast_cancer 31.6 1 FBS Yes 120.3145 148.8840 166.9970
## 5 Breast_cancer 31.6 1 FBS Yes 93.0085 112.3135 120.8550
## 6 Breast_cancer 31.6 1 FBS Yes 73.0530 89.5760 106.5460
## 7 Breast_cancer 31.6 1 FBS Yes 77.3740 94.5350 98.8085
## 8 Breast_cancer 31.6 1 FBS Yes 86.9470 104.6345 126.0585
## 9 Breast_cancer 31.6 1 FBS Yes 60.1265 73.8855 78.7955
## 10 Breast_cancer 31.6 1 FBS Yes 57.8390 74.6115 85.8910
#it Day6 Day8 growth loggrowth logDay0O PatientID Treat
## 1 160.2315 161.5000 58.7725 5.877069 0.43593435 1 FBS
## 2 NA NA NA NA 0.26033083 1 FBS
## 3 127.7305 129.4470 37.4470 5.226778 0.26757175 1 FBS
## 4 170.0245 170.7400 49.7100 5.635464 0.68184802 1 FBS
## 5 120.9000 120.9400 27.8915 4.801754 0.31047197 1 FBS
## 6 108.6700 109.9470 35.6170 5.154494 -0.03794708 1 FBS
#H 7 NA NA NA NA 0.04495826 1 FBS
## 8 NA NA NA NA 0.21324565 1 FBS
## 9 81.3230 82.3135 21.1975 4.405822 -0.31891361 1 FBS
## 10 87.9040 88.1560 30.0650 4.910013 -0.37484799 1 FBS

Question 1.b

We then fit an appropriate random effect model, similar tho that of the lecture.

d <- d[!is.na(d$loggrowth),] # Keep only data about follicles alive at that day
library(lmerTest)

fitlmer <- lmer(loggrowth ~ Treat + logDayO + (1|PatientID), data=d)

summary (fitlmer)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]

## Formula: loggrowth ~ Treat + logDayO + (1 | PatientID)

#it Data: d

#it

## REML criterion at convergence: 561.8

##
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Scaled residuals:

Min 1Q Median 3Q

Max

-5.8002 -0.4642 0.1743 0.5882 3.3223

Random effects:
Groups Name

Variance Std.Dev.

PatientID (Intercept) 0.02584 0.1608

Residual 0.18373 0.4286
Number of obs: 458, groups: PatientID, 14
Fixed effects:

Estimate Std. Error df t value Pr(>|tl)
(Intercept) 5.23967 0.06249 31.43111 83.844 < 2e-16
TreathPL 0.81261 0.05574 449.12405 14.579 < 2e-16
TreatHSA 0.03542 0.06419 452.93636 0.552 0.581350
TreatUCP 0.26925 0.07182 447.21342 3.749 0.000201
logDay0 0.78476 0.04855 452.24318 16.163 < 2e-16
Signif. codes: O 'sxxx' 0.001 '*xx' 0.01 'x' 0.05 '.' 0.1 '

Correlation of Fixed Effects:
(Intr) TrthPL TrtHSA TrtUCP
-0.584
-0.519 0.617
-0.422 0.494
0.021 -0.060

TreathPL
TreatHSA
TreatUCP
logDay0

0.407
-0.015 -0.042
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We then report appropriate effect sizes and 95%-CI to compare the efficacy of the four plasma
products on the follicle growth. To make all-pairwise comparisons, we can use the multcomp
package (here we do not need/want to adjust for multiple testing; this is exploratory research).

library(multcomp)

Multc <- glht(fitlmer,mcp(Treat="Tukey")) # make all-pairwise comparisons
summary (Multc,test=adjusted(type = "none")) # p-values NOT adjusted

#i#
##
##
##
##
#i#
#i#
##

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Tukey

Fit: lmer(formula =
data = d)

Contrasts

loggrowth ~ Treat + logDayO + (1 | PatientID),



#it
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z])

## hPL - FBS == 0 0.81261 0.05574 14.579 < 2e-16 *x*x

## HSA - FBS == 0 0.03542 0.06419 0.552 0.581078

## UCP - FBS == 0 0.26925 0.07182  3.749 0.000178 **x

## HSA - hPL == 0 -0.77719 0.05302 -14.660 < 2e-16 **x

## UCP - hPL == 0 -0.54336 0.06568 -8.273 2.22e-16 **x*

## UCP - HSA == 0 0.23383 0.07431 3.147 0.001651 *x

## ——-

## Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.06 '.' 0.1 ' ' 1

## (Adjusted p values reported -- none method)

We then back transform to obtain ratios of means/medians and round (2 digits). Note that
we use calpha = gqnorm(0.975) (=1.96), the usual 97.5% quantile of the standard normal
distribution, to compute unadjusted confidence intervals (because we do not want adjustments
for multiple testing).

MainRES <- round(2 confint(Multc, calpha = gnorm(0.975))$confint,2)
MainRES [order (-MainRES[,1]),]

#i# Estimate 1lwr upr
## hPL - FBS 1.76 1.63 1.89
## UCP - FBS 1.21 1.09 1.33
## UCP - HSA 1.18 1.06 1.30
## HSA - FBS 1.02 0.94 1.12
## UCP - hPL 0.69 0.63 0.75
## HSA - hPL 0.58 0.54 0.63

Question 1.d

The results are relatively similar to those of the growth at day 8, seen in the lecture, in terms
of effect sizes (i.e., clinical relevance) and statistical significance. The order, with hPL leading
to the best average growth and HSA leading to the worst, is the same. Indeed, running the
same code after changing whichDay <- 6 to whichDay <- 8, we obtain the following results
(shown in the lecture):

#i#t Estimate 1lwr upr
## hPL - FBS 1.82 1.69 1.96
## UCP - FBS 1.34 1.21 1.49
## UCP - HSA 1.25 1.12 1.39
## HSA - FBS 1.07 0.98 1.17
## UCP - hPL 0.74 0.67 0.81
## HSA - hPL 0.59 0.55 0.64



Question 1.e

We first read the estimated values of the Between and Within variance components in the
output of summary(fitlmer). We read that they are 0.02584 = 0.16082 and 0.18373 =
0.42862. The estimated intra-class correlation is then computed as follows,

omegaB <-0.1608

taulW <- 0.4286

rho <- omegaB~2/(omegaB~2 + tauW 2)
rho

## [1] 0.1233886

And we read that it is estimated as 0.12, slightly smaller than when analyzing the growth at
day 8 in the lecture (it was 0.15). For the interpretation, we can repeat that the correlation
quantifies how similar is the log-growth of two random follicles of the same woman as compared
to that of two random follicles of two different woman, when comparing two follicles grown
with the same plasma product and of the same baseline size. The larger the correlation
and the more similar the log-growth of the follicles. Because the correlation is estimated
slightly smaller, we can say that the log-growth is estimated less similar within woman as
compared to between woman, when looking at the earlier timepoint 6 days instead of 8 days.
However, the difference is very small and it could be due to random sampling (i.e, statistical
uncertainty).

Question 2

After running a similar code as above (essentially changing 6 by 2, 4 or 8 in whichDay <-
6), we obtain all the results for the growth at all days. They are summarized in the “Forest
plot” below. The estimated intra-class correlation for each day (“rho”) is also provided in
the legend for completeness.

Overall, we can see that the results are in the same direction at 4, 6 and 8 days, but the
longer the time to grow and the larger the differences in mean growth between the different
plasma product conditions. At day 2, the differences are substantially smaller; maybe because
2 days is not long enough to study follicle growth. This conclusion is consistent with Figure
3.B in Cristina’s paper, where we can see that the differences between the estimated median
growths are larger at larger times.

We note that the intra-class correlation is estimated to increase over time.
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Exercise B

Question 1

We first load the data and visualize the first lines.

load(url("http://paulblanche.com/files/kneeSurgery.rda"))
d <- kneeSurgery
head(d)

## arm site age sex Oxford.pre Oxford.01 Oxford.06 Oxford.12 Oxford.24



## 1 1 E 69 male 20 35 45 44 47
# 2 2 B 50 female 16 26 43 46 42
## 3 1 A 61 female 20 29 46 46 NA
## 4 1 D 65 male 18 28 40 39 47
## 5 2 A 73 male 28 22 22 27 26
#H 6 2 D 73 male 32 33 27 38 43

We then create a baseline table to summarize the distribution of the important variables, per
arm.

library(Publish)
Tabl <- univariateTable(arm~site+Q(age)+sex+0xford.pre,

data=d,

compare.groups = FALSE,

show.totals = FALSE)
Tab1l
#Hit Variable Level arm = 1 (n=174) arm = 2 (n=172)
## 1 site A 41 (23.6) 39 (22.7)
## 2 B 35 (20.1) 38 (22.1)
## 3 C 41 (23.6) 37 (21.5)
## 4 D 20 (11.5) 28 (16.3)
## 5 E 37 (21.3) 30 (17.4)
## 6 age median [iqr] 68 [62.2, 74.0] 67 [60, 74]
## 7 sex female 82 (47.1) 83 (48.3)
## 8 male 92 (52.9) 89 (51.7)
## 9 Oxford.pre mean (sd) 23.1 (6) 22 (6.3)

There are no substantial difference between the two arms. This is a consequence of the
randomization. We can notice that the baseline Oxford score (i.e., pre-surgery score) was
slighty better in arm 1 than in arm 2, on average (1 point). There are aproximately as many
men and women and about half of the patients are aged between 60 and 75. As expected,
the baseline Oxford scores are rather low (indication for surgey), but there is substantial
variablity from patient to patient (SD=6).

Question 2

Let’s now have a quick look at the evolution of the scores, for a few random patients.

Question 2.a

We first select 20 random patients, to have approximately 10 of each arm. We select just a
few patients because the plots are often difficult to read with too many patients and because
a few patients is usually sufficient to get a feel of the data.



d20 <- d[101:120,]

Question 2.b

To use the xyplot () function of the lattice" package to produce a spaghetti plot, we first
need to create a long format version of the data. We can do it with the reshape () function.

thetimes <- c(0,1,6,12,24) # times of repeated measures
long20 <- reshape(d20,

varying

v.names =

timevar =

c( "Oxford.pre", "Oxford.01", "Oxford.06",
"Oxford.12",

"Oxford",
"time"
times=thetimes,
direction = "long")

"Oxford.24"),

long20 <- long20[order(long20$id),] # reorder by subject id
rownames (long20) <- NULL
head (long20,n=20)
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65
65
65
65
76
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76
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72
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52
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# delete row names

# quick check

sex time Oxford id

female
female
female
female
female
female
female
female
female
female
female
female
female
female
female

male

male

male

male

male

0
1
6
12
24
0
1
6
12
24
0
1
6
12
24
0
1
6
12
24

13
18
26
34
33
19
22
19
30
32
25
35
29
47
47
19
14
31
35
29
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Question 2.c

We are now almost ready to call the xyplot () function of the “lattice” package to produce a
spaghetti plot. We just need to make the variable arm a factor variable before.

library(lattice)
long20$arm <- factor(long20$arm,levels=1:2,
labels=c("arm=1","arm=2"))

xyplot (Oxford~time | arm, # show score per time, for each arm
data=long20, # data in long format
group=id, # patient id
type='b', # both points and lines are drawn

xlab="Time since surgery (months)",
ylab="0xford knee score",
scales=list(x=list(at=thetimes))) # set wvalues to show on z-azis

01 6 12 24

L1 ] ] ] L1 ] ] ]
arm=1 arm=2

@

/%i

Oxford knee score

1 I I I 1
01 6 12 24

Time since surgery (months)

Question 3

Overall, the score of each patient is improving over time. However, sometimes is goes down a
bit before going up again. This will typically happen if e.g., the health of the patient (pain
and knee function) is stable and patients answers slightly differently at the same question
in a random way, e.g, randomly switch from the answer “With little difficulty” to “With
moderate difficulty” (leading to 1 point difference in the score) when replying to the question
“During the past 4 weeks... Could you kneel down and get up again afterwards?”. Maybe



more importantly, we see than for most patients, the score changes much more within the
12 months than from 12 to 24 months (i.e., 1-year after surgery, the score does no longer
change much). Finally, based on these 20 patients, the outcome of the surgery does not look
very different, in average, at 2 years after surgery. Of course, we should not draw any strong
conclusion based on 20 patients and it can be useful to redo the plot for 20 other randomly
selected patients. See e.g., the plot below obtained using d20 <- d[1:20,]. Note: I can
say that these patients are randomly selected here because the rows of the dataset are not
ordered in any specific way. This would be a questionable statement if , e.g., we had sorted
the dataset by date of inclusion. Arm 1 looks so much better when we randomly chose these
patients ! This might be a good incentive to redo the plot for 20 other random patients
(again, just to get a feel of the data).
01 6 12 24

11 ] 11 ] ] ]
arm=1 arm=2

30

Oxford knee score

20 —

1 I I I 1
01 6 12 24

Time since surgery (months)

Question 4

The next descriptive plot of interest with this kind of repeated measurements data is the
plot of the missing data pattern. We could already see that we have missing data from the
spaghetti plots, because some subjects did not have dots at all times (and/or no lines between
the dots).

library(LMMstar)

MissPat <- summarizeNA(d[,c( "Oxford.pre",
"Oxford.O1",
"Oxford.06",

10



"Oxford.12",
"Oxford.24")])
plot(MissPat)

missing

yes
no

number of observations

28-
285-

Oxford.pre Oxford.01 Oxford.06 Oxford.12 Oxford.24
(0 missing) (8 missing)13 missing)16 missing(33 missing)

Question 4.a

The first line (1 patient), third line (1 patient), seventh line (2 patients) and ninth line (28
patients) are compatible with patients being “lost to follow-up”. That is, as soon as we have
a missing data because a patient does not answer a questionnaire, then the patient does not
reply either at questionnaires sent later. In practice, we usually can (and should!) collect
data about the reasons why we have missing data. In this exercise, we have no such data.

Question 4.b

Some patients did not reply to the questionnaire at some follow-up times but replied later.
E.g., 7 patients did not reply at the questionnaire sent after 1 month, but replied to all
questionnaires sent later. In total, we have 74+1+1+9+11=29 with this kind of intermittent
missing data.

11



Question 4.c

We can see that 285 out of 346, i.e. 82%, replied to all questionnaires.

Question 4.d

For the analysis of the change score at 24 months, which is our primary outcome of interest
here, we can read from the x-axis than 33 patients have missing data (i.e., did not reply to
the questionnaire). That is, 9.5% missing data.

Question 5

Informally, Missing Completely At Random (MCAR) means that the missingness mechanism
is unrelated to the outcome and covariates. In this context, it means that the missingness
mechanism is unrelated to age, sex, study site and pre-surgery Oxford score (i.e., the baseline
covariates that we will use in the model for the analysis) and also unrelated to previously
collected Oxford knee scores (i.e., to the answer to the previous questionnaires). This can be
realistic if the main reason for not answering is that the patients simply forgot to answer or
that we failed to reach out to them. This might be unrealistic if patients who are doing bad
have a much stronger incentive to answer the questionnaire than those who are doing well. It
could happen if, e.g., there is a free text question at the end of the questionnaire that patient
can use to further communicate their worries to their doctors. In that case, missing data
would be less common among patients having a “good” score than among patients having a
“poor” score.

Informally, Missing At Random (MAR) means that the missingness may depend on covariates
and previous measures of the outcome. In this context, it means that the missingness
mechanism can be related to age, sex, study site and any Oxford score obtained via previous
questionnaires. This is more realistic (less restrictive). Although not perfect, because e.g.,
the missingness cannot depend on the current score (unobserved, because missing), the more
correlated the scores over time and the closer we are from the situation in which we could
assume that it can depend on this current value.

Question 6

We now perform the main analysis, by fitting a Mixed Model for Repeated Measurements
(MMRM). Before calling the Imm() function, we first need to create a data set in the long
format. Additionally, we will center the covariates age and Oxford score pre-surgey and
choose 24 months as the reference level for the factor variable. This is just to facilitate the
interpretation of the default output of the software.

long <- reshape(d,
varying = c("Oxford.01", "Oxford.06","Oxford.12", "Oxford.24"),

12



v.names = "Oxford",

timevar = "time",
times=c(1,6,12,24),
direction = "long")

long <- longlorder(long$id),] # reorder by subject ID

rownames (long) <- NULL # delete row names

## head(long,n=5) # quick check

#--— data management steps —-—-—

long$time <- factor(long$time)

long$time <- relevel(long$time,ref="24")

long$arm <- factor(long$arm)

long$change <- long$0xford-long$0xford.pre

long$age67 <- longbage-67

long$0xford.pre22 <- long$0xford.pre-22

#-—— fit MMRM ————————————————————

lmmfit <- lmm(change~Oxford.pre22*time + site*time
+ sex*time + arm*time + age67*time,
repetition = ~time|id,
structure = "UN", data = long)

## Warning in .lmmNormalizeData(as.data.frame(data) [unique(stats::na.omit(var.all))],

summary (lmmfit)

#it Linear Mixed Model

##

## Dataset: long

##

## - 345 clusters were analyzed, 1 were excluded because of missing values

## - 1314 observations were analyzed, 70 were excluded because of missing values
## - between 1 and 4 observations per cluster

##

## Summary of the outcome and covariates:

##

## $ change :num 15 25 24 27 10 27 30 26 9 26 ...

#it $ Oxford.pre22: num -2 -2 -2 -2 -6 -6 -6 -6 -2 -2 ...

## $ time : Factor w/ 4 levels "24","1","6","12": 2341234123 ...
## $ site : Factor w/ 5 levels "A","B","C","D",..: 55655222211
#it $ sex : Factor w/ 2 levels "female","male": 2 222111111

## $ arm : Factor w/ 2 levels "1","2": 1111222211

## $ age67 tnum 2 2 2 2 -17 -17 -17 -17 -6 -6 ...

## reference level: time=24;site=A;sex=female;arm=1

##

## Estimation procedure

##

13



##
#it
#it
##
#i#
##
#Hit
#it
##
#it
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#it
##
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#i#
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##
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##
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##
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- convergence: TRUE (6 iterations)
largest |score| = 9.257865e-05 for k.12

|change|= 6.40005142749089e-06 for sigma

Residual variance-covariance:

- correlation structure:

24 1

6

24 1.000 0.374 0.604 0.
1 0.374 1.000 0.432 0.
6 0.604 0.432 1.000 O.
12 0.762 0.431 0.706 1.

- variance structure:

sigma.24
sigma.l

sigma.6
sigma.12

(Intercept)
Oxford.pre22

timel

time6

timel2

siteB

siteC

siteD

siteE

sexmale

arm?2

age67
Oxford.pre22:timel
Oxford.pre22:timeb
Oxford.pre22:timel2
timel:siteB
time6:siteB
timel2:siteB
timel:siteC

~0 + time

12
762
431
706
000

~time
standard.deviation ratio

6.67
6.69
7.09
6.70

estimate

20

-14.

.656
0.68
369
.572
.665
.135
.309
.673
.398
.511
.267
.083
.039
.099
.078
.002
.763
.712
.154

1.00
1.00
1.06
1.00

se
0.935
0.06
1.047
0.881
0.682
1.103
1.091
1.26
1.128
0.74
.741
.046
.068
.057
.043
.233
.033
. 795
.226

R O, P, O OO OO
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Restricted Maximum Likelihood (REML)
log-likelihood :-4078.991

parameters: mean = 36, variance = 4, correlation

unstructured

df
323.1
320.1
334.1
333.3
306
316.
319.
318.
314.
317.
316.
318
331.5
331.5
300.2
325.5
325.1
302
332.7

SO Wb

lower
18.817
-0.799
-16.429
-4.304
-2.007
-2.305
-2.455
-4.152
-1.821
-1.967
-3.724
-0.174
-0.172
-0.21
-0.163
-3.428
-1.27
-0.852
-2.258

6

upper

22.
-0.

495
561

-12.31

-0.
677
.036
.837
.806
.616
.945

O NO - DN O

839

|
o
oo
S

N NN OO OO

.008
.094
.013
.008
.425
.796
277
.566

O O O O O OO ODODODODOOOOOAANANANT

.value

Fixed effects: change ~ Oxford.pre22 * time + site * time + sex * time + arm *

le-04 *xx*
le-04 *xx
le-04 *xx

.00373
.33048
.90287
77721
.18527
. 72466
.49047
.00240
.07413
.56131
.08187
.07452
.41725
.46091
.37090
.90007

* %k

*k



#it time6:siteC 2.442 1.019 324.8 0.437 4.447 0.01716 *
## timel2:siteC 0.009 0.788 299.7 -1.541 1.559 0.99073

## timel:siteD -0.844 1.407 326.8 -3.613 1.925 0.54914

# time6:siteD -0.253 1.183 328.2 -2.58 2.075 0.83102

#i# timel2:siteD -1.401 0.902 296.3 -3.176 0.374 0.12138

#it timel:siteE -1.128 1.271 328 -3.628 1.372 0.37533

## time6:siteE 0.295 1.056 321.9 -1.783 2.374 0.78007

# timel2:siteE -0.098 0.808 300 -1.689 1.492 0.90355

# timel:sexmale 0.642 0.831 329.1 -0.992 2.276 0.43988

H## time6:sexmale 0.301 0.692 325.7 -1.061 1.662 0.66431

#it timel2:sexmale 0.267 0.531 299.1 -0.777 1.311 0.61526

## timel:arm2 -1.588 0.832 328.4 -3.224 0.049 0.05722 .
#it time6:arm2 -2.107 0.692 323.6 -3.468 -0.746 0.00251 *x*
# timel2:arm2 -0.856 0.53 299.7 -1.9 0.188 0.10757

## timel:age67 0.257 0.052 331.8 0.155 0.36 < 1e-04 *xx
#it time6:age67 0.037 0.043 327 -0.048 0.122 0.39239

## timel2:age67 0.075 0.033 299.8 0.01 0.141 0.02442 *
##t

##  Signif. codes: O '**x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1.

##  Columns lower and upper contain 95} pointwise confidence intervals for each coeffic
##  Model-based standard errors are derived from the observed information (column se).
## Degrees of freedom were computed using a Satterthwaite approximation (column df).

Question 7

Yes! The results suggest that this trial brings sufficient evidence that one type of surgery is
better than the other, for the mean Oxford score at 2 years. We estimate that, in average,
the change in Oxford score at 2 years is 2.267 (95-CI=[0.81; 3.724], p=0.002) points lower for
patients who receive the surgery of arm 2 than for those receiving the surgery of arm 1. Hence,
there is evidence that arm 1 is the better. Because, of randomization, this mean difference of
2.267 has two interpretations; either a difference “in average” (as in the previous sentence,
the so-called marginal interpretation) or when comparing patients similar for age, sex, study
side and baseline Oxford score (the so-called conditional interpretation). The conditional
interpretation is valid under the assumption that the model is correct (e.g., no interaction
between arm and age, as no interaction was assumed) whereas the marginal interpretation is
valid even if the model is not correct, to a large extent (e.g., if the model is incorrect because
an interaction term between arm and age exists and was not included in the model).

Question 8
The 95% confidence interval is [0.81,3.724]. So, we cannot rule out that the difference is

less than one point. This is very small. Even the estimated value 2.267 is not very large,
when looking at the patient to patient variability in the change score at 24 months, when
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considering patients of similar age, study site, gender, surgery arm and baseline score. The
standard deviation that quantifies this variability is estimated as 6.67 (see sigma.24 in the
output of the software). This means that, in average, patients who receive the surgery of
arm 1 are doing better than those receiving the surgery of arm 2, but that a large proportion
of patients receiving the surgery of arm 2 will anyway have a better score at 24 months than
many patients receiving the surgery of arm 1.

Question 9

Question 9.a

The interpretation of the default output seen above was easy because the timepoint of interest
was the reference level for the factor variable time. This was important because of the
interaction terms between time and arm. If we want an equally easy read of the results
to estimate the between-arm difference in mean change score at earlier timepoints, we can
simply change the reference level and re-fit the model.

long$time6 <- relevel(long$time,ref="6")

#-—— fit MMRM ---------——————————-

lmmfit6 <- lmm(change~0Oxford.pre22*time6 + site*time6
+ sex*time6 + arm*time6 + age67+timef,
repetition = ~time6]id,
structure = "UN", data = long)

## Warning in .lmmNormalizeData(as.data.frame(data) [unique(stats::na.omit(var.all))],

summary (lmmfit6, print=FALSE)$mean["arm2",] # print only the line of interest

#it estimate se statistic df lower upper null p.value
## arm2 -4.37 0.778 -5.62 332 -5.9 -2.84 0 4.04e-08

So, we estimate that, in average, the change in Oxford score at 6 months is 4.37 (95-CI=[2.84;
5.9], p=0.002) points lower for patients who receive the surgery of arm 2 than for those
receiving the surgery of arm 1. Hence we estimate that the between-arm difference is larger
at the earlier timepoint of 6 months. Although changing the reference level is our favorite
trick, we could have read this from the previous output. Indeed, -2.267 —2.107 = 4.37 (see
lines with arm2 and time6:arm2 in the output above). However, we could not have read the
confidence interval and p-value from the previous output. But, from the previous output,
we could instead see that the treatment effect, i.e., the between-arm difference in change
score, is estimated significantly larger at 6 months than at 24 months (difference is 2.107,
95-CI=[0.746;3,468], p=0.0025). In other words, there is evidence that one surgery is better
than the other and that the superiority of this surgery is larger at 6 months than at 24
months. We can proceed similarly with other time points (e.g., 1 or 12 months).
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Question 9.b

The model did not show evidence that age was associated with the change score at 24 months
(p=0.074). We can even say that if an association exists, we are confident that it is rather
small. Indeed, the confidence interval for the difference in mean change score at 24 months,
when comparing two patients, one 10 years older than the other, both patients being similar
for sex, arm, etc. .., is [-1.74,0.08]. Because the results suggest that the association between
the outcome and age is not very large, the gain in power obtained by adjusting on age was
probably very modest. A similar conclusion applies to sex.

Question 10

A simpler analysis would have been to use a complete case analysis with a simple ANCOVA
model.

Question 10.a

nrow(d)

## [1] 346

dCCA <- d[!'is.na(d$0xford.24),]
dCCA$change <- dCCA$0xford.24 - dCCA$0xford.pre
nrow(d) -nrow (dCCA)

## [1] 33

This analysis would excludes 33 patients (as already seen in question 4)

Question 10.a

fitANCOVA <- 1m(change~0Oxford.pre + site + sex + arm + age,data=dCCA)
summary (fitANCOVA) $coef ["arm",] # print only the line of interest

#H Estimate Std. Error t value Pr(>ltl)

## -2.294516560 0.744607827 -3.081510126 0.002248068

confint (fitANCOVA) ["arm", # print only the line of interest
#it 2.5 % 97.5 %

## -3.7597545 -0.8292787

The result of this simple complete case ANCOVA analysis is very similar! This is somewhat
reassuring. We estimate that, in average, the change in Oxford score at 2 years is 2.295
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(95-CI1=[0.829; 3.760], p=0.002) points lower for patients who receive the surgery of arm 2
than for those receiving the surgery of arm 1. Reminder: the result of the main analysis
seen at Question 7 was 2.267 (95-CI=[0.81; 3.724], p=0.002).

This is not very surprising because:
« not so many patients were excluded using the complete case analysis (only 9.5%)

o the missing completely at random assumption seems reasonable in the context of this
trial

o the two methods of analysis are equivalent with complete data (i.e., we would have had
the exact same results, if we had run the analysis with a data set without any missing
data)

Question 11

An even simpler analysis would have been to use a complete case analysis with a t-test.

t.test(change~arm,data=dCCA)

##

## Welch Two Sample t-test

##

## data: change by arm

## t = 1.9088, df = 307.3, p-value = 0.05723
## alternative hypothesis: true difference in means between group 1 and group 2 is not e
## 95 percent confidence interval:

## -0.05182871 3.40764741

## sample estimates:

## mean in group 1 mean in group 2

## 19.70323 18.02532

Here we estimate that, in average, the change in Oxford score at 2 years is of 1.68 points
lower for patients who receive the surgery of arm 2 than for those receiving the surgery of
arm 1 (95%-CI=[-0.05, 3.41], p=0.057). The results is not statistically significant.

However, this is not the recommended approach, as it does not leverage the information
contained in the baseline variables (hence it is less powerful; note the wider confidence interval,
width is 3.41-(-0.05)=3.46 vs 2.91=3.724-0.81 using the MMRM of the main analysis).

Question 12

Many researchers wonder whether they should define their primary outcome as the score at
end of follow-up or as the change score at end of follow-up. The previous questions consider
the later. We now perform the MMRM analysis using the former.
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lmmfit0x <- lmm(0xford~0xford.pre22*time + site*time
+ sex*time + arm*time + age67*time,
repetition = ~timelid,
structure = "UN", data = long)

## Warning in .lmmNormalizeData(as.data.frame(data) [unique(stats::na.omit(var.all))],

summary (lmmfitOx, print=FALSE)$mean["arm2",]

## estimate se statistic df lower upper null p.value
## arm2 -2.27 0.741 -3.06 316 -3.72 -0.81 0 0.0024

We get the exact same results! This is not so surprising if we think about it, because we
adjust for the baseline score. Comparing the score at 24 months or the change score at 24
months is equivalent, when comparing patients who have the same baseline score. It does
not matter whether we fit the model using the score or the change score at 24 months, as
long as we adjust for the baseline score.

Using the score or the change score at 24 moths is however different, when we do not adjust
for the baseline score, as e.g., when using a simple t-test with a complete case analysis. That
is another reason to not like an analysis unadjusted for the baseline score (on top of the
power gain argument).

t.test (Oxford.24~arm,data=dCCA)

#it

## Welch Two Sample t-test

#it

## data: Oxford.24 by arm

## t = 3.3505, df = 286.43, p-value = 0.000915
## alternative hypothesis: true difference in means between group 1 and group 2 is not e
## 95 percent confidence interval:

## 1.064864 4.097652

## sample estimates:

## mean in group 1 mean in group 2

## 42.61290 40.03165

Here the result is different from that of question 11. It is now significant!
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