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Exercise A: what to adjust on?
1. Genetic factors are time-independent covariates and will therefore affect in the

same way the baseline and follow-up measurement. Their effect will therefore
cancel out when computing the change score so there is no need to adjust for
them.
Age is technically a time-varying covariate but its variation is small between
baseline and follow-up and its effect on the change score could be neglected.
To test the treatment effect, we could do a two sample t-test comparing the
change score of the two groups.

2. The variables scanner type and radioactive dose are time dependent and it
is their difference between baseline and follow-up that we should adjust for.
We could test the treatment effect using a linear regression with the change
score as an outcome, group, change in radioactive dose and scanner type as
regressors and extract the p-value corresponding to the group effect. Note that
compared to a t-test, using lm in will assume same variance between treat-
ment groups.
In a randomized experiment, this adjustment would reduce the residual vari-
ance and would therefore lead to a gain in power.
In an observational study, this adjustment would will lead to a gain in power
as well as a reduction in bias, as it will remove any confounding effect from
scanner type and radioactive dose.

3. Adjusting on post-randomized variables can bias the treatment effect, e.g. if
the variable is a mediator of the treatment effect.
It is very unlikely to be the case here as the production of the radioactive
tracer and the choice of the scanner are logistic/technical choices that should
be independent of the treatment group. It could be a problem if, for instance,
more depressed patients take (much more) time to get into scanner leading to
a lower radioactive dose. If the treatment is effective against depression, we
will see a larger PET signal in the treated group even if the treatment would
not affect the brain serotonergic system.
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Exercise B: Analyzing a longitudinal study

Part 1: descriptive statistics
1. The str function reveals the presence of missing values in the dataset. We can

also visualize see them when looking at the first rows of the dataset:

head(armd.wide)

subject lesion line0 visual0 visual4 visual12 visual24 visual52 treat.f miss.pat
1 1 3 12 59 55 45 NA NA Active --XX
2 2 1 13 65 70 65 65 55 Active ----
3 3 4 8 40 40 37 17 NA Placebo ---X
4 4 2 13 67 64 64 64 68 Placebo ----
5 5 1 14 70 NA NA NA NA Active XXXX
6 6 3 12 59 53 52 53 42 Active ----

The miss.pat variable indicates the missing data pattern: "-" for observed data
and "X" for missing data. The treat.f contains the randomization group and not
the treatment given at a patient at a given timepoint. Indeed at baseline none of the
subjects are treated.

2. The output displays the number of observed outcome value, missing outcome
value, and a number of summary statistics of the outcome distribution (mean,
standard deviation) for each treatment group at each timepoint.
Summary statistics for the whole cohort can be obtained using:

summarize(visual ∼ week, na.rm = TRUE, data = armd.long)

week observed missing mean sd min q1 median q3 max
1 0 240 0 54.95417 14.88512 20 45.0 56.5 66.0 85
2 4 231 9 52.45887 15.90042 12 42.0 53.0 64.0 84
3 12 227 13 50.83700 17.42404 3 39.5 52.0 64.5 85
4 24 214 26 47.48598 18.36733 5 36.0 47.0 62.0 85
5 52 195 45 41.97436 18.61865 4 27.0 40.0 56.5 85

Note: adding |subject in the formula will also display the correlation.
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3. What is the best graphical representation depends on the aspect(s) of the data
we want to visualize and the number of observations and timepoints.
A boxplot gives a very concise and readable representation of the data, even
when with many timepoints and with a large number of observations. One can
quickly identify trends in mean and variance over repetitions. One may also be
able to identify certain deviation to normality (e.g. asymmetry). It, however,
does give any information about the correlation between measurements. So
in some sense it may exaggerate the variability. It is also not well suited to
identify subgroups (e.g. half of the people respond to the treatment and the
other half do not). Spaghetti plots are well suited when there is an ordering
of the repetitions (e.g. over time, this is not the case when looking at several
brain regions though). They can be used to visually assess the correlation over
time and detect groups of observations (e.g. some go up and some go down).
However when the sample increase, they become hard to read and one should
consider displaying subsets of the observations. We could have also used a
scatterplot of visual at week 52 vs week 0. It gives the full picture of the
data when having only 2 measurements but becomes hard to read with more
timepoints as there are many pairs of variables.
Information about missing data and within-subject correlation are missing or
not easily visible on the previous displays.

4. The first figure displays the percentage of missing value at a specific timepoint.
The second figure displays the missing data patterns (the left numbers corre-
spond to the number of subjects for a specific pattern). For instance there are
188 subjects with full data and 6 subjects with only baseline data.
From the first figure, the number of missing values seems to increase over time,
especially in the active group. In a real analysis, this would be concerning.
Indeed, if patients with bad vision are more likely to drop out the mean com-
puted at the later timepoints will be biased and not in a conservative way. It
could also reflect side effects of the treatment that are so serious that the pa-
tients choose/have to leave study. However, for simplicity, we will ignore this
problem in the latter questions and act as if censoring was independent of the
outcome and of the treatment.
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Part 2: Univariate approach
5. It selects individuals with complete data at baseline and at week 52

6. Using the t.test function lead to the following results:

e.tt <- t.test(change52 ∼ treat.f, data = armd.wideCC)
e.tt

Welch Two Sample t-test

data: change52 by treat.f
t = 1.8842, df = 191.47, p-value = 0.06106
alternative hypothesis: true difference in means between group Placebo and group Active is not equal to 0
95 percent confidence interval:
-0.2013017 8.7949525

sample estimates:
mean in group Placebo mean in group Active

-11.18095 -15.47778

The estimated effect:
diff(e.tt$estimate)

mean in group Active
-4.296825

indicates a faster decrease in vision in the active group. The corresponding p-
value and confidence intervals are displayed the output of the t-test object. Note
that estimate differs from the one from part one:
diff(armd.s[armd.s$week == "0","mean"]-armd.s[armd.s$week == "52","mean"])

[1] 4.580473

As some individuals have been excluded in this part even though they had a
non-missing baseline value, e.g.:
armd.wide[1,]

subject lesion line0 visual0 visual4 visual12 visual24 visual52 treat.f miss.pat
1 1 3 12 59 55 45 NA NA Active --XX
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7. When fitting a linear regression using lm, we assume that the residual variance
is the same in both groups which is not the case with a t-test. If we were to
assume same variance when doing a t-test:

t.test(change52 ∼ treat.f, data = armd.wideCC, var.equal = TRUE)

Two Sample t-test

data: change52 by treat.f
t = 1.8746, df = 193, p-value = 0.06235
alternative hypothesis: true difference in means between group Placebo and group Active is not equal to 0
95 percent confidence interval:
-0.2239352 8.8175860

sample estimates:
mean in group Placebo mean in group Active

-11.18095 -15.47778

we would get the same as the linear regression. Instead we could use the following
syntax to match the result of the Welch t-test in a regression framework:

e.tt <- lmm(change52 ∼ treat.f, structure = IND(∼treat.f),
data = armd.wideCC)

model.tables(e.tt)

estimate se df lower upper p.value
(Intercept) -11.180952 1.603326 104.0208 -14.360402 -8.001503 2.940177e-10
treat.fActive -4.296825 2.280499 191.5078 -8.794947 0.201296 6.105844e-02

8. We can repeat exactly the same steps with visual24 instead of visual52 to
study the treatment effect at 24 weeks. Alternatively we can load the LMMstar
package and use the mt.test function:

armd.wideCC$change4 <- armd.wideCC$visual4 - armd.wideCC$visual0
armd.wideCC$change12 <- armd.wideCC$visual12 - armd.wideCC$visual0
armd.wideCC$change24 <- armd.wideCC$visual24 - armd.wideCC$visual0

ttest.mlmm_noAdj <- mt.test(change4+change12+change24+change52 ∼ treat.f,
data = armd.wideCC,
method = "none")
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Argument ’data’ contains 8 missing values.
Advarselsbeskeder:
1: I .lmmNormalizeData(as.data.frame(data)[unique(stats::na.omit(var.all))], :

2 clusters have been removed.

2: I .lmmNormalizeData(as.data.frame(data)[unique(stats::na.omit(var.all))], :
1 cluster has been removed.

3: I .lmmNormalizeData(as.data.frame(data)[unique(stats::na.omit(var.all))], :
5 clusters have been removed.

print(ttest.mlmm_noAdj,digits = 3)

by parameter estimate se df lower upper p.value
1 change4 treat.fActive -1.83 1.07 183 -3.94 0.272 0.0875
2 change12 treat.fActive -1.85 1.54 192 -4.88 1.184 0.2306
3 change24 treat.fActive -2.83 1.85 188 -6.49 0.819 0.1277
4 change52 treat.fActive -4.30 2.28 192 -8.79 0.201 0.0611

To adjust for multiple testing, consider using:

suppressWarnings(
ttest.mlmm <- mt.test(change4+change12+change24+change52 ∼ treat.f,

data = armd.wideCC)
)
print(ttest.mlmm,digits = 3)

Argument ’data’ contains 8 missing values.
by parameter estimate se df lower upper p.value

1 change4 treat.fActive -1.83 1.07 183 -4.43 0.766 0.243
2 change12 treat.fActive -1.85 1.54 192 -5.60 1.896 0.545
3 change24 treat.fActive -2.83 1.85 188 -7.34 1.677 0.336
4 change52 treat.fActive -4.30 2.28 192 -9.85 1.258 0.177

With this (complete case) approach we discarded all data from individuals who
had a missing value at week 52. So even if a subject had full data until week 24, he
was not included in the analysis. We have seen that there was a strong correlation
between timepoints (e.g. >0.8 between week 24 and 52) so it is not optimal to not
exploit early measurements of the outcome.
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Part 3: Multivariate approach
9. To interpret the coefficients it can be useful to know the reference level:

levels(e052.lmm)$reference

treat.f week
"Placebo" "0"

(Intercept) is the average vision in the control group at week 0.
treat.fActive is the difference in vision between groups at baseline.
week52 is the time effect in the control group.
treat.fActive:week52 is the difference in time effect between groups,

i.e. the treatment effect.

The estimate and p-value exactly the t-test under equal variance. We can use the
formula from the lecture (slide 43) to deduce the estimated vision at each timepoint:

c(placebo.0 = as.double(coef(e052.lmm)["(Intercept)"]),
placebo.52 = sum(coef(e052.lmm)[c("(Intercept)","week52")]),
active.0 = sum(coef(e052.lmm)[c("(Intercept)","treat.fActive")]),
active.52 = sum(coef(e052.lmm)))

placebo.0 placebo.52 active.0 active.52
55.61905 44.43810 54.57778 39.10000

which matches the output of effects:

effects(e052.lmm, variable = "treat.f")

Average counterfactual outcome
w.r.t ’treat.f’ values

estimate se df lower upper
treat.f=Placebo(t=0) 55.619 1.452 193 52.755 58.483
treat.f=Placebo(t=52) 44.438 1.803 193.1 40.882 47.994
treat.f=Active(t=0) 54.578 1.569 193 51.484 57.671
treat.f=Active(t=52) 39.1 1.947 193.1 35.259 42.941

We could retrieve the results of the t-test with heterogeneous variance by strati-
fying the covariance structure on treatment:
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e052.lmm2 <- lmm(visual ∼ treat.f*week,
repetition = ∼week|subject,
structure = UN(∼treat.f),
data = dfCC)

model.tables(e052.lmm2)

estimate se df lower upper p.value
(Intercept) 55.619048 1.487209 104.0217 52.669863 58.5682321 0.000000e+00
treat.fActive -1.041270 2.128823 191.0550 -5.240284 3.1577441 6.253111e-01
week52 -11.180952 1.603326 103.9912 -14.360412 -8.0014926 2.943139e-10
treat.fActive:week52 -4.296825 2.280499 191.4544 -8.794955 0.2013039 6.105887e-02

10. The mixed model e52.lmm is the same as e052.lmm except it includes individual
with missing data only at follow-up. Their final value is predicted based on
their baseline value which provides some protection against informative dropout
due to poor outcome. The mixed model e52.lmm is fitted using data from all
timepoints. The final value of patients with missing data is predicted based
on their baseline and early follow-up information. This provides substantially
more protection against informative dropout due to poor outcome, as there is
a strong correlation over time.
The estimates (between -4.29 and -4.86) and the p-values (between 0.062
and 0.037) do not differ substantially, even though for a clinical trial it would
lead to a different conclusion as the p-value is below 0.05 in the last, most
reliable, approach.

13. With this model we can summarize the treatment effect in this single number
as we assume a linear treatment effect (i.e. proportional to the number of weeks
from baseline):

armd.long$week.num <- as.numeric(as.character(armd.long$week))

eLin.lmm <- lmm(visual ∼ week + week.num:treat.f,
repetition = ∼ week | subject, structure

= "UN",
data = armd.long)

Design matrix for the mean structure is singular.
Coefficient "week.num:treat.fPlacebo" has been removed.

model.tables(eLin.lmm)
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estimate se df lower upper p.value
(Intercept) 54.954 0.9608 239 53.061 56.84694 0.00e+00
week4 -2.207 0.5520 243 -3.294 -1.11920 8.51e-05
week12 -3.585 0.8193 259 -5.198 -1.97158 1.76e-05
week24 -6.563 1.0585 279 -8.647 -4.47970 2.02e-09
week52 -11.601 1.5316 203 -14.621 -8.58071 1.25e-12
week.num:treat.fActive -0.083 0.0409 187 -0.164 -0.00231 4.39e-02

The coefficient (Intercept) is the average vision at baseline (in both groups).
The week4, week8, week24, and week52 coefficients are the change in vision from
baseline in the placebo group. The week.num:treat.fActive is the amount of
decrease in vision per week due to the treatment.
The message we get when fitting the model comes from the interaction we implicitely
asked for a parameter modeling the group difference at baseline. Such parameter
cannot be estimated with the "proportional" parametrisation since it enforces no
treatment effect at baseline.

The treatment effect at week 52 would be 52 times the week.num:treat.fActive:

52*coef(eLin.lmm)["week.num:treat.fActive"]

week.num:treat.fActive
-4.315862

This matches the output of the effects method:

effects(eLin.lmm, variable = "treat.f", type = "difference")

Difference in average counterfactual outcome
w.r.t ’treat.f’ values

estimate se df lower upper p.value
treat.f=Active-Placebo(t=0) 0 0 Inf 0 0 NA
treat.f=Active-Placebo(t=4) -0.332 0.164 187.4 -0.655 -0.009 0.0439 *
treat.f=Active-Placebo(t=12) -0.996 0.491 187.4 -1.964 -0.028 0.0439 *
treat.f=Active-Placebo(t=24) -1.992 0.982 187.4 -3.928 -0.055 0.0439 *
treat.f=Active-Placebo(t=52) -4.316 2.127 187.4 -8.512 -0.12 0.0439 *

Note: The linearity assumption makes it easier to communicate the treatment
effect (as it is not time specific) and can also lead to a gain in statistical power if
the linearity assumption is reasonable. This can be investigated by comparing the
fit with the more flexible model:

9



grid <- unique(armd.long[,c("week","week.num","treat.f")],)
gridA <- predict(eLin.lmm, newdata = grid, keep.data = TRUE)
gridB <- predict(e.lmm, newdata = grid, keep.data = TRUE)

gg.fit <- ggplot(mapping = aes(x = week.num, y = estimate,
color = treat.f, group = treat.f))

gg.fit <- gg.fit + geom_point(data = gridA, aes(shape = "linear"),
size = 2)

gg.fit <- gg.fit + geom_line(data = gridA, aes(linetype = "linear"),
size = 1)

gg.fit <- gg.fit + geom_point(data = gridB, aes(shape = "non-linear"),
size = 2)

gg.fit <- gg.fit + geom_line(data = gridB, aes(linetype = "non-linear"),
size = 1)

gg.fit <- gg.fit + labs(x = "Time (in weeks)", y = "Vision",
shape = "Treatment effect model",
linetype = "Treatment effect model",
color = "Treatment group")

gg.fit
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