
Exercise 5 - solution

Exercise A

Question 1

power.prop.test(p1=0.40,p2=0.60,power=0.85)

##
## Two-sample comparison of proportions power calculation
##
## n = 110.6668
## p1 = 0.4
## p2 = 0.6
## sig.level = 0.05
## power = 0.85
## alternative = two.sided
##
## NOTE: n is number in *each* group

We could include 111 women in each treatment group, hence we could include 222 women in
total. This is enough to have 85% power if the chances of pregnancy are indeed 40% and
60% in the two groups. However, the power might be considerably less if the treatment
turns out to be less effective than we thought. It would be a pity to make a type-II error,
that is, to not conclude that the data show enough evidence to conclude that the treatment
works, if the treatment works reasonably well, although maybe less well than we anticipated.
Hence the result to the calculation made at the next questions are important to make a good,
well-informed, decision about the sample size.

Question 2

power.prop.test(n=111,p1=0.40,p2=0.5)

##
## Two-sample comparison of proportions power calculation
##
## n = 111
## p1 = 0.4
## p2 = 0.5
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## sig.level = 0.05
## power = 0.3210212
## alternative = two.sided
##
## NOTE: n is number in *each* group

The power of the study drops to only 32%, if we include 222 women (111 per group) and if
the treatment results in only 50% chance of pregnancy. This is important to know. If we
think that a treatment that leads to 50% chance of pregnancy is still a “successful” treatment
worth prescribing, we might worry about the sample size of 222 women. With this sample
size, it is unlikely that we can show that the treatment “works”, if it works but leads to only
50% chance of pregnancy.
power.prop.test(n=111,p1=0.40,p2=0.55)

##
## Two-sample comparison of proportions power calculation
##
## n = 111
## p1 = 0.4
## p2 = 0.55
## sig.level = 0.05
## power = 0.6106339
## alternative = two.sided
##
## NOTE: n is number in *each* group

The power of the study drops to 61%, if we include 222 women (111 per group) and if the
treatment results only in 55% chance of pregnancy. This is important to know. After all,
55% is not very different from our expectation of 60%, so it might not be completely unlikely.
Is it wise, and ethical, to choose a sample size of 222 women knowing this result? Only the
investigators can know about that, after balancing the pros and cons, and thinking about the
financial, logistical and ethical constraints they have. The investigators are expected to take
an informed decision about the sample size accordingly.
power.prop.test(n=111,p1=0.40,power=0.75)

##
## Two-sample comparison of proportions power calculation
##
## n = 111
## p1 = 0.4
## p2 = 0.5760567
## sig.level = 0.05
## power = 0.75
## alternative = two.sided
##
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## NOTE: n is number in *each* group

The smallest improvement in chance of pregnancy that leads to a decent power of 75%
or more, with this sample size of 222 women, is 18%, i.e. 58% chance of pregnancy with
treatment versus 40% without treatment (if the chance of pregnancy without treatment is
indeed 40%). Again, we believe it is important to know to take an informed decision about
the sample size of the study. If we think that a treatment leading to less than 58% chances of
pregnancy can still be thought as a “successful” treatment, then we could consider increasing
the sample size. Indeed, otherwise we have a somewhat low power (less than 75%) to have a
significant result with such a treatment.

To sum-up, several sample size and power calculations are often interesting to perform, to
best understand the consequences of the choice of a specific sample size. The main aim of
this exercise was to illustrate that.

Note that it is often interesting to choose the sample size which is the result of using not
what we expect in the treatment group as input in the sample size calculation (60% in this
exercise), but instead the “least good result” that we would still be happy to have (e.g., 50%).
But, ethical, financial and logistical constraints are also important to take into account, such
that we do not always proceed like this. Planning a study is not all about statistics, although
statistics have an important role to play!

Exercise B

Part I

Question 1
We first load the data and look at the “summary”, as always.
load(url("http://paulblanche.com/files/smoking.rda"))
d <- smoking
summary(d)

## age smoker death
## below 45:628 no :732 no :945
## 45-54 :208 yes:582 yes:369
## 55-64 :236
## above 65:242

We can see that 945 women among the 1314 were still alive 20 years after the initial survey.
There were 582 smokers among the 1314.

Question 2 (2.a & 2.b)
We first produce a 2 by 2 table.
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table(smoker=d$smoker,death=d$death)

## death
## smoker no yes
## no 502 230
## yes 443 139

We observe:

• 502 non-smokers alive at 20 years after the initial survey
• 230 non-smokers dead within 20 years after the initial survey
• 443 smokers alive at 20 years after the initial survey
• 139 smokers dead within 20 years after the initial survey

This gives the following 20-year risk estimates for smokers and non-smokers:
230/(502+230) # 20-year risk of death among non smokers

## [1] 0.3142077
139/(443+139) # 20-year risk of death among smokers

## [1] 0.2388316

That is, 31.4% for non smokers and 23.9% for smokers. These results seem surprising: we
know that smoking is unhealthy, hence we expected a higher risk of death for smokers.

Question 2 (2.c & 2.d)
We now compute the corresponding “exact” binomial confidence intervals.
binom.test(x=230,n=502+230) # non smokers

##
## Exact binomial test
##
## data: 230 and 502 + 230
## number of successes = 230, number of trials = 732, p-value < 2.2e-16
## alternative hypothesis: true probability of success is not equal to 0.5
## 95 percent confidence interval:
## 0.2807031 0.3492176
## sample estimates:
## probability of success
## 0.3142077
binom.test(x=139,n=443+139) # smokers

##
## Exact binomial test
##
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## data: 139 and 443 + 139
## number of successes = 139, number of trials = 582, p-value < 2.2e-16
## alternative hypothesis: true probability of success is not equal to 0.5
## 95 percent confidence interval:
## 0.2047323 0.2756061
## sample estimates:
## probability of success
## 0.2388316

We therefore have the following 20-year risk estimate and 95% CI:

• Non-smokers: 31.4% (28.1 ; 34.9)
• Smokers: 23.9% (20.5 ; 27.6)

The 95% confidence intervals do not overlap, hence the condidence intervals “suggest” that
the direction of the result, that is, a higher risk of death for non-smokers, is not due to small
sample random variation.

Question 3
We now perform a statistical hypothesis test to compare the risk among smokers and non-
smokers. We choose to use the Fisher’s exact test because we prefer to obtain “exact” results
to approximate results when we can. Howerver, the large sample size can justify to use a
large sample method such as the Pearson Chi-square test.
fisher.test(table(smoker=d$smoker,death=d$death))

##
## Fisher's Exact Test for Count Data
##
## data: table(smoker = d$smoker, death = d$death)
## p-value = 0.002989
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.5307485 0.8822128
## sample estimates:
## odds ratio
## 0.6850392

We obtain a p-value=0.003, smaller than 5%, hence we conclude to a significant association
between smoking and 20-year risk of death.

Just out of curiosity, we also compute the p-value of the Pearson Chi-square test.
chisq.test(table(smoker=d$smoker,death=d$death))

##
## Pearson's Chi-squared test with Yates' continuity correction
##
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## data: table(smoker = d$smoker, death = d$death)
## X-squared = 8.7515, df = 1, p-value = 0.003093

We see that the p-value is almost the same, which is due to the large sample size.

Questions 4 & 5
We now use the fonction table2x2() from the Publish package to estimate several association
measures, with confidence intervals. We start with the survival probability difference:
Tab1 <- table(smoker=d$smoker,death=d$death)
library(Publish)

## Loading required package: prodlim
table2x2(Tab1,stats = c("table","rd"))

## _____________________________
##
## 2x2 contingency table
## _____________________________
##
## deathno deathyes Sum
## smokerno 502 230 732
## smokeryes 443 139 582
## -- -- -- --
## Sum 945 369 1314
##
## _____________________________
##
## Statistics
## _____________________________
##
##
## a= 502
## b= 230
## c= 443
## d= 139
##
## p1=a/(a+b)= 0.6858
## p2=c/(c+d)= 0.7612
##
## _____________________________
##
## Risk difference
## _____________________________
##
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## Risk difference = RD = p1-p2 = -0.07538
## Standard error = SE.RD = sqrt(p1*(1-p1)/(a+b)+p2*(1-p2)/(c+d)) = 0.02463
## Lower 95%-confidence limit: = RD - 1.96 * SE.RD = -0.1237
## Upper 95%-confidence limit: = RD + 1.96 * SE.RD = -0.0271
##
## The estimated risk difference is -7.5% (CI_95%: [-12.4;-2.7]).

We can first check that the survival probability estimates match the previous results. We
have:

• Non-smokers: 68.6%, which is indeed equal to 100 - 31.4
• Non-smokers: 76.1%, which is indeed equal to 100 - 23.9

We finally conclude that the estimated survival chance difference is 7.5% (95% CI= [12.4;2.7]).

We now compute the ratio of the survival probabilities.
table2x2(Tab1,stats = c("rr"))

##
## _____________________________
##
## Risk ratio
## _____________________________
##
## Risk ratio = RR = p1/p2 = 0.9010
## Standard error = SE.RR = sqrt((1-p1)/a+(1-p2)/c)= 0.03413
## Lower 95%-confidence limit: = RR * exp(- 1.96 * SE.RR) = 0.8427
## Upper 95%-confidence limit: = RR * exp(1.96 * SE.RR) = 0.9633
##
## The estimated risk ratio is 0.901 (CI_95%: [0.843;0.963]).

The estimated survival ratio is 0.901 (95% CI=[0.843;0.963]). Equivalently, we can also say
that the chance of survival is 1-0.901= 9.9% lower for non smokers than for smokers (95%
CI=[3.7;15.7]).

Finally, we now compute the survival odds ratio.
table2x2(Tab1,stats = c("or"))

##
## _____________________________
##
## Odds ratio
## _____________________________
##
## Odds ratio = OR = (p1/(1-p1))/(p2/(1-p2)) = 0.6848
## Standard error = SE.OR = sqrt((1/a+1/b+1/c+1/d)) = 0.1257
## Lower 95%-confidence limit: = OR * exp(- 1.96 * SE.OR) = 0.5353
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## Upper 95%-confidence limit: = OR * exp(1.96 * SE.OR) = 0.8761
##
## The estimated odds ratio is 0.685 (CI_95%: [0.535;0.876]).

The estimated survival odds ratio is 0.685 (95% CI=[0.535;0.876]).

Question 6
We now produce a barplot to compare the number of included women in each age group,
between smokers and non smokers.

We first compute the frequency table.
Tab2 <- table(d$smoker,d$age)
Tab2

##
## below 45 45-54 55-64 above 65
## no 340 78 121 193
## yes 288 130 115 49

And we now plot these counts.
barplot(Tab2,beside=TRUE,

xlab="age",
ylab="number of women",
legend=TRUE,
args.legend=list(title="Smoker",ncol=2))
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Interestingly, we observe that very few women above 65 are smokers. Although the number
of smokers and non-smokers is not the same also in the other age groups, the differences are
not as large.

Question 7
We now produce a barplot to compare the 20-year survival probability in each age group.

We first compute the frequency table, and then compute the survival probabilities.
Tab3 <- table(d$death,d$age) # counts
Tab3

##
## below 45 45-54 55-64 above 65
## no 596 169 145 35
## yes 32 39 91 207
Tab4 <- prop.table(Tab3,margin=2) # proportions per age
Tab4

##
## below 45 45-54 55-64 above 65
## no 0.94904459 0.81250000 0.61440678 0.14462810
## yes 0.05095541 0.18750000 0.38559322 0.85537190

We are now ready to plot the 20-year survival probabilities in each age group.
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barplot(100*Tab4[1,],
xlab="age",
ylab="20-year survival probability (%)",
col="black")
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We can observe that the older the women, the less likely they survive 20 years. This seems
to make perfect sense.

Question 8
We now produce a barplot to compare the 20-year survival probability in each age group,
between smokers and non smokers. First, we compute the survival probabilities in each age
group.
Tab3smokers <- table(d$death[d$smoker=="yes"],

d$age[d$smoker=="yes"]) # counts for smokers
Tab4smokers <- prop.table(Tab3smokers,

margin=2) # proportions per age for smokers
Tab3NonSmokers <- table(d$death[d$smoker=="no"],

d$age[d$smoker=="no"]) # counts for non smokers
Tab4NonSmokers <- prop.table(Tab3NonSmokers,

margin=2) # proportions per age for non smokers
# merge the results into one unique matrix
Tab5 <- rbind(Tab4smokers[1,],Tab4NonSmokers[1,])
rownames(Tab5) <- c("Smoker","Non smoker")
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Tab5

## below 45 45-54 55-64 above 65
## Smoker 0.9340278 0.7923077 0.5565217 0.1428571
## Non smoker 0.9617647 0.8461538 0.6694215 0.1450777

We are now ready to produce the plot.
barplot(Tab5,

beside=TRUE,
xlab="age",
ylab="20-year survival probability",
legend=TRUE)
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We see observe that in all age groups, the 20-year survival probability is lower for smokers
than for non-smokers. This makes sense, we know that smoking is not healthy. We also
observe that there is a substantial difference in 20-year survival probability between age
groups. This makes sense, the older a women, the more likely she cannot survive 20 years.
Finally, we observe that the differences in 20-year survival probability between age groups are
substantially larger than the differences in 20-year survival between smoker and non smokers,
when comparing women of the same age group. This makes sense: smoking is bad, but not
as bad as becoming old (for the 20-year risk of death).
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Question 9
We have seen that most smokers are younger than non-smokers in this data set. Especially,
most of the women older than 65 are non-smokers. Because we have also seen that the 20-year
risk of death is much higher for women older than 65 than the others (as expected), we might
suspect that the survival difference between smokers and non-smokers is mostly driven by
the fact that those who do not smoke are older.

Smoking is known to be unhealthy, but it is probably not as life-threatening as becoming
“old”, which is what suggests the plot obtained at question 8. Hence the results of question 2:
when comparing young smokers to old non-smokers, the data suggest that old non-smokers
die more often.

Part II

Question 10
Below we examplify how to do it for the age group 45-54.
Tab1a <- table(smoker=d$smoker[d$age=="45-54"],death=d$death[d$age=="45-54"])
table2x2(Tab1a,stats = c("table","rr"))

## _____________________________
##
## 2x2 contingency table
## _____________________________
##
## deathno deathyes Sum
## smokerno 66 12 78
## smokeryes 103 27 130
## -- -- -- --
## Sum 169 39 208
##
## _____________________________
##
## Statistics
## _____________________________
##
##
## a= 66
## b= 12
## c= 103
## d= 27
##
## p1=a/(a+b)= 0.8462
## p2=c/(c+d)= 0.7923
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##
## _____________________________
##
## Risk ratio
## _____________________________
##
## Risk ratio = RR = p1/p2 = 1.0680
## Standard error = SE.RR = sqrt((1-p1)/a+(1-p2)/c)= 0.06594
## Lower 95%-confidence limit: = RR * exp(- 1.96 * SE.RR) = 0.9385
## Upper 95%-confidence limit: = RR * exp(1.96 * SE.RR) = 1.2153
##
## The estimated risk ratio is 1.068 (CI_95%: [0.938;1.215]).

We can proceed similarly for the other age groups and obtain:

• Age group below 45: estimated risk ratio 1.030 (95% CI= [0.992;1.069]).
• Age group 45-54: estimated risk ratio 1.068 (95% CI= [0.938;1.215]).
• Age group 55-64: estimated risk ratio 1.203 (95% CI= [0.979;1.478]).
• Age group above 65: estimated risk ratio 1.016 (95% CI= [0.472;2.186]).

There is no significant difference in any age group, although there seems to be a systematic
trend towards a higher 20-year risk of death for smokers. The fact that the results are not
significant is probably due to a lack of power. The sample size of each age group is not very
large.

Question 11
The results of Part II can be thought as more interesting because the two groups that we
compare (smokers versus non smokers) are expected to be more similar with respect to
everything but smoking, as the women of the two groups have a similar age. Hence we can
expect that the association between smoking and survival that we estimated are closer to
causal associations than those of Part I, although we cannot rigouroulsy claim that they are
indeed causal.

Exercise C

Question 1
We first load the data and look at the first rows.
rm(list=ls()) # clear memory (to start fresh for the new exercise)
load(url("http://paulblanche.com/files/sedative.rda"))
head(sedative)

## zolpidem doxepin
## 1 no no
## 2 no no
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## 3 no no
## 4 no no
## 5 no no
## 6 no yes
d <- sedative # data in an object with a shorter name, for convenience

Question 2
First, we tabulate the data from the night after receiving zolpidem.
table(d$zolpidem)

##
## no yes
## 33 19

We can read that 33 out of 33+19=52 subjects did not wake before receiving the loudest tone
(110 dB).
prop.table(table(d$zolpidem))

##
## no yes
## 0.6346154 0.3653846

This corresponds to 33/(19+33)=63.5% of the subjects. We proceed similarly with the data
from the night after receiving doxepin.
table(d$doxepin)

##
## no yes
## 9 43
prop.table(table(d$doxepin))

##
## no yes
## 0.1730769 0.8269231

We read that 9 out of 52 subjects did not wake before receiving the loudest tone (110 dB),
that is 17.3%.

Question 3
We compute 95% exact binomial confidence intervals for the risk of not waking before receiving
the loudest tone (110 dB), after receiving each treatment.
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binom.test(x=33,n=52)

##
## Exact binomial test
##
## data: 33 and 52
## number of successes = 33, number of trials = 52, p-value = 0.07039
## alternative hypothesis: true probability of success is not equal to 0.5
## 95 percent confidence interval:
## 0.4895590 0.7637564
## sample estimates:
## probability of success
## 0.6346154
binom.test(x=9,n=52)

##
## Exact binomial test
##
## data: 9 and 52
## number of successes = 9, number of trials = 52, p-value = 2.038e-06
## alternative hypothesis: true probability of success is not equal to 0.5
## 95 percent confidence interval:
## 0.08232569 0.30328011
## sample estimates:
## probability of success
## 0.1730769

We read the 95% confidence intervals: [49.0%; 76.4%] for zolpidem and [8.2% ; 30.3%] for
doxepin.

Note that to round the values of the upper and lower limits, we can use this code:
round(100*binom.test(x=9,n=52)$conf.int,1)

## [1] 8.2 30.3
## attr(,"conf.level")
## [1] 0.95

Question 4
Here we want to compare two proportions obtained from the same subjects. In other words,
we want to compare two sets of binary data which are paired. Although we might first think
about using a Fisher test or a Chi-square test when we aim to compare two proportions, here
this would not be appropriate. This is because Fisher test and Chi-sqaqre tests assume that
the two samples that we compare are independent. This is not the case here as the data
come from two different nights for the same subjects. The data are paired per subject and

15



not independent. Some subjects will tend to be fast asleep no matter the drug they take (or
not) and some others tend to be light sleepers, also no matter the drug they take. To analyze
such paired data the appropriate analogue to the chi-square test is the McNemar test.

Question 5
We now compute the p-value from a McNemar test test. We prefer the “exact” version of
the test to a (maybe more commonly used) version based on a large sample approximation.
After all, why approximate when you can get the exact?

The aim when using this test is to understand whether the data of the two nights are
sufficiently different to confidently conclude that one treatment leads to a higher risk of not
waking than the other.
Tabcompare <- table(zolpidem=d$zolpidem,

doxepin=d$doxepin)
Tabcompare

## doxepin
## zolpidem no yes
## no 5 28
## yes 4 15

We can now proceed with the mcnemar.exact function of the package exact2x2.
library(exact2x2)

## Loading required package: exactci

## Loading required package: ssanv

## Loading required package: testthat
mcnemar.exact(Tabcompare)

##
## Exact McNemar test (with central confidence intervals)
##
## data: Tabcompare
## b = 28, c = 4, p-value = 1.93e-05
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 2.448889 27.465170
## sample estimates:
## odds ratio
## 7

We read that the p-value is very small: p < 0.001. Hence the data contains enough evidence
to confidently conclude that the risk of not waking are different after receiving each treatment.
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Usually it is unnecessary to provide the exact value of a p-value when it is smaller that 0.001.
Reporting the exact value of the p-value, i.e., 1.93e-05, will often look a bit “foolish” in a
scientific paper.

A possible conclusion sentence is: “The risk of not waking after receiving zolpidem (63.5%,
95%-CI=[49.0%; 76.4%]) was found significantly larger than that after recieving doxepin
(17.3%, 95%-CI=[8.2% ; 30.3%], p-value<0.001).”

Question 6
In the abstract of Drake et al (2017), we can read: “A significantly greater proportion of
participants in the zolpidem condition (63.5%) did not wake until receiving the loudest tone
(110 dB) as compared to the doxepin (17.6%) and placebo conditions (17.3%, 5.8%).” We
can notice that 63.5% and the significant result are similar to those we found with our own
analyses above. We can be happy to have successfully reproduced their results. There is,
however, a tiny difference of 17.6% instead of 17.3% in the result for doxepin. We suspect
that this is a minor typo because 17.3% is actually reported in the result section ‘Primary
Outcomes’, subsection ’Auditory Awakening Threshold’, on page 4 of the paper.
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