
Exercise 2 - solution

Paul Blanche

Exercise A

Question 1

Research hypothesis: the average protein level of the milk at 6 weeks after calving of cows
fed with lupins only is larger than that of cows fed with barley and lupins.

Null and alternative hypotheses:

• H0: the average protein level of the milk at 6 weeks after calving of cows fed with
lupins only is equal to than that of cows fed with barley and lupins.

• H1: the average protein level of the milk at 6 weeks after calving of cows fed with lupins
only is different to than that of cows fed with barley and lupins.

Statistical methods: we will compare the mean of the two groups using Welch’s t-test. We
plan to report the estimated mean in each group and their difference, the corresponding 95%
confidence intervals and the p-value of the Welch’s t-test.

Prepare and load the data: (similar to what is done in the R-demo of Lecture 2).
library(nlme)
# first keep only specific rows
d <- Milk[which(Milk$Time==6 & Milk$Diet %in% c("lupins","barley+lupins")),]
# second keep only specific columns
d <- d[,c("protein","Diet")]
# Finally we delete the levels no longer present in the data.
d$Diet <- droplevels(d$Diet)
summary(d)

## protein Diet
## Min. :2.720 barley+lupins:27
## 1st Qu.:3.118 lupins :27
## Median :3.300
## Mean :3.336
## 3rd Qu.:3.547
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## Max. :4.300

Plot summarizing the data: here we can consider a stripchart because the sample size is
not very big.
stripchart(d$protein~d$Diet,method="jitter",vertical=TRUE)
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But here it is actually easier to get an idea of the data and the direction of the result with
boxplots.
boxplot(d$protein~d$Diet)
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Computation: first of each mean and corresponding 95% confidence interval.
t.test(d$protein[d$Diet=="barley+lupins"])

##
## One Sample t-test
##
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## data: d$protein[d$Diet == "barley+lupins"]
## t = 58.179, df = 26, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 3.272728 3.512458
## sample estimates:
## mean of x
## 3.392593
t.test(d$protein[d$Diet=="lupins"])

##
## One Sample t-test
##
## data: d$protein[d$Diet == "lupins"]
## t = 51.291, df = 26, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 3.148906 3.411835
## sample estimates:
## mean of x
## 3.28037

The mean protein levels are estimated to be 3.39 (95% CI=[3.27;3.51]) and 3.28 (95%
CI=[3.15;3.41]) for cows fed with barley and lupins and lupins only, respectively. Note that
the confidence intervals overlap in a way which enables us to conclude that the difference
between the two group is not significant. This is because the estimated mean 3.28 (lupins
only) is included in the 95% CI [3.27;3.51] (that of the mean for lupins and barley). But
anyway, we want a p-value and a confidence interval for the difference, so it does not matter
much.
mean(d$protein[d$Diet=="barley+lupins"]-d$protein[d$Diet=="lupins"])

## [1] 0.1122222
t.test(d$protein~d$Diet)

##
## Welch Two Sample t-test
##
## data: d$protein by d$Diet
## t = 1.2966, df = 51.563, p-value = 0.2005
## alternative hypothesis: true difference in means between group barley+lupins and group lupins is not equal to 0
## 95 percent confidence interval:
## -0.06148816 0.28593261
## sample estimates:
## mean in group barley+lupins mean in group lupins
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## 3.392593 3.280370

We estimate the mean difference as 0.11 (95% CI=[-0.06;0.29]). The p-value is p=0.20, which
is indeed larger than 5%, hence the difference is not significant. Because the confidence
interval is relatively wide, it is not possible to conclude evidence against absence of effect of
diet. We instead conclude that we do not know. Maybe there is no effect of the diet, maybe
there is one but it is too small to lead to significant results with such a small sample size of
n=27+27=54.

Visually check whether the main assumptions hold:
par(mfrow=c(1,2))
qqnorm(scale(d$protein[d$Diet=="barley+lupins"]),main="barley+lupins")
abline(0,1,col="red",lty=2,lwd=3)
qqnorm(scale(d$protein[d$Diet=="lupins"]),main="lupins")
abline(0,1,col="red",lty=2,lwd=3)
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With two histograms as in the R-demo.
MyCols <- c(rgb(1,0,0,alpha=0.5),rgb(0,1,0,alpha=0.5))
# Plot the first histogram
hist(d$protein[d$Diet=="barley+lupins"],

col=MyCols[1],
xlim=c(2,5),
ylim=c(0,10),
main="",
xlab="Protein level (%)",
axes=FALSE)

# Add the second
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hist(d$protein[d$Diet=="lupins"],col=MyCols[2],add=TRUE)
# Add a legend
legend("right",

fill=MyCols,
legend=c("barley+lupins","lupins"),
bty="n",
border="white")

# Add x-axis and y-axis
axis(1)
axis(2,las=2)
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It looks approximately OK, although here it does not really matter much, because the sample
size of each group is not “very small” (n=27 in each group).

Conclusion/reporting:

The mean protein level of the milk at 6 weeks after calving (expressed in %) is estimated as
3.39 (95% CI=[3.27;3.51]) and 3.28 (95% CI=[3.15;3.41]) for cows fed with barley and lupins
and lupins only, respectively. The mean difference is estimated as 0.11 (95% CI=[-0.06;0.29])
and is not significantly different from 0 (p-value=0.20). Hence, we cannot conclude that the
diet is associated with the mean protein level of the milk at 6 weeks after calving.

Question 2

Research hypothesis: the candidate gene NACP, coding for alpha synuclein is associated
with alcohol dependence: longer allele length results in more expressed alpha synuclein
mRNA.

Null and alternative hypotheses:
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• H0: the distribution of the level of expressed alpha synuclein mRNA does not depend
on the allele length (“intermediate” vs “long”).

• H1: the distribution of the level of expressed alpha synuclein mRNA is different when
the allele length is “intermediate” and “long”.

Statistical methods: we will compare the distribution of the two groups using an exact
Wilcoxon test. This test does not make any assumption regarding the distribution of the
data and is exact, which means that the p-values can be trusted even with arbitrarily small
sample sizes. We will also compare the two distributions visually using a dotplot.

Prepare and load the data: (similar to what is done in the R-demo of Lecture 2).
library(coin)
data(alpha) #
alpha <- alpha[alpha$alength!="short",]
alpha$alength <- droplevels(alpha$alength)
summary(alpha)

## alength elevel
## intermediate:58 Min. :-2.400
## long :15 1st Qu.: 1.750
## Median : 2.900
## Mean : 2.487
## 3rd Qu.: 3.500
## Max. : 4.430

Plot summarizing the data:
set.seed(123)
stripchart(alpha$elevel~alpha$alength,

vertical=TRUE,method="jitter",
pch=c(19,19),col=c("red","blue"),
xlab="Allele length",ylab="Expression levels of alpha synuclein mRNA",
axes=FALSE)

axis(1,at=1:2,c("Intermediate (n=58)","long (n=15)"))
axis(2,las=TRUE)
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Computation: of exact Wilcoxon test.
wilcox_test(elevel~alength,data=alpha, distribution='exact')

##
## Exact Wilcoxon-Mann-Whitney Test
##
## data: elevel by alength (intermediate, long)
## Z = -1.8298, p-value = 0.06745
## alternative hypothesis: true mu is not equal to 0

The p-value is 0.067, not significant (at 5%).

Visually check whether the main assumptions: here there is no specific assumption to
visually check. The exact Wilcoxon test does not assume normality or anything else. It only
assumes that the observations are independent (within and between groups), which should
be supported by the design of the study.

Conclusion/reporting: Although the dotplot suggests that there might be a difference
in the distribution of the gene expression between “long” and “intermediate” allele lengths,
the exact Wilcoxon test does not show a significant difference (p-value=0.067). It can be
hypothesized that there is a difference, but that the sample size of the study is too small to
lead to a significant result.

Question 3

Research hypothesis: the treatment has an effect on the (mean) response.
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Null and alternative hypotheses: for each dose=x, with x=0.05, 0.2, 0.6 and 1 :

• H0: the mean response is not different for dose 0 and dose x.

• H1: the mean response is different for dose 0 and dose x.

Statistical methods: we will compare the mean response with dose 0 to that of each non
zero dose using a Welch’s t-test. We plan to report the estimated mean response for each
dose and the differences between dose 0 and any other dose. We plan to adjust for multiple
comparisons using the Bonferroni correction. We will report simultaneous 95% confidence
intervals and adjusted p-values, to adjust for the fact that we perform four comparisons.
This means that we will use the significance level 5%/4=1.25% instead of the usual 5% and
compute 100-5%/4=98.75% confidence intervals. (Note: in Lecture 4 we will learn about an
alternative, more powerful, approach).

Prepare and load the data:
library(DoseFinding)
data(biom)
summary(biom)

## dose resp
## Min. :0.00 Min. :-1.1131
## 1st Qu.:0.05 1st Qu.: 0.2595
## Median :0.20 Median : 0.5448
## Mean :0.37 Mean : 0.6990
## 3rd Qu.:0.60 3rd Qu.: 1.1397
## Max. :1.00 Max. : 2.9245

Plot summarizing the data: here we can consider a stripchart because the sample size is
not very big.
stripchart(biom$resp~biom$dose,

vertical=TRUE,method="jitter",
pch=c(15:19),col=c("red","blue","forestgreen","orange","purple"),
xlab="Dose",ylab="Response")
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Computation: first of the mean response and corresponding 95% confidence interval for
each dose. We adjust the significance level for the fact that we make four comparisons (as in
R-demo).
K <- 4
SignLevel <- 0.05/K # Adjusted significance level
ConfLevel <- 1 - SignLevel # Adjusted confidence level
t.test(biom$resp[biom$dose==0],conf.level = ConfLevel)

##
## One Sample t-test
##
## data: biom$resp[biom$dose == 0]
## t = 2.9851, df = 19, p-value = 0.007609
## alternative hypothesis: true mean is not equal to 0
## 98.75 percent confidence interval:
## 0.02616907 0.66364173
## sample estimates:
## mean of x
## 0.3449054
t.test(biom$resp[biom$dose==0.05],conf.level = ConfLevel)

##
## One Sample t-test
##
## data: biom$resp[biom$dose == 0.05]
## t = 4.1663, df = 19, p-value = 0.0005242
## alternative hypothesis: true mean is not equal to 0
## 98.75 percent confidence interval:
## 0.1543252 0.7591834
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## sample estimates:
## mean of x
## 0.4567543
t.test(biom$resp[biom$dose==0.2],conf.level = ConfLevel)

##
## One Sample t-test
##
## data: biom$resp[biom$dose == 0.2]
## t = 4.8995, df = 19, p-value = 9.955e-05
## alternative hypothesis: true mean is not equal to 0
## 98.75 percent confidence interval:
## 0.3540777 1.2665539
## sample estimates:
## mean of x
## 0.8103158
t.test(biom$resp[biom$dose==0.6],conf.level = ConfLevel)

##
## One Sample t-test
##
## data: biom$resp[biom$dose == 0.6]
## t = 5.4627, df = 19, p-value = 2.859e-05
## alternative hypothesis: true mean is not equal to 0
## 98.75 percent confidence interval:
## 0.4625575 1.4063163
## sample estimates:
## mean of x
## 0.9344369
t.test(biom$resp[biom$dose==1],conf.level = ConfLevel)

##
## One Sample t-test
##
## data: biom$resp[biom$dose == 1]
## t = 4.4782, df = 19, p-value = 0.0002576
## alternative hypothesis: true mean is not equal to 0
## 98.75 percent confidence interval:
## 0.3642971 1.5331257
## sample estimates:
## mean of x
## 0.9487114

Hence we get the following estimates and Bonferroni adjusted simultaneous confidence
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intervals:

• Dose 0: 0.34 [0.03; 0.66]
• Dose 0.05: 0.46 [0.15; 0.76]
• Dose 0.2: 0.81 [0.35; 1.27]
• Dose 0.6: 0.93 [0.46; 1.41]
• Dose 1: 0.95 [0.36; 1.53]

We now compute the p-values for each comparison. First, we compute p-values not adjusted
for multiple testing.
t.test(biom$resp[biom$dose==0],biom$resp[biom$dose==0.05])

##
## Welch Two Sample t-test
##
## data: biom$resp[biom$dose == 0] and biom$resp[biom$dose == 0.05]
## t = -0.70223, df = 37.896, p-value = 0.4868
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.4343192 0.2106214
## sample estimates:
## mean of x mean of y
## 0.3449054 0.4567543
t.test(biom$resp[biom$dose==0],biom$resp[biom$dose==0.2])

##
## Welch Two Sample t-test
##
## data: biom$resp[biom$dose == 0] and biom$resp[biom$dose == 0.2]
## t = -2.3069, df = 33.979, p-value = 0.02729
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.87542792 -0.05539283
## sample estimates:
## mean of x mean of y
## 0.3449054 0.8103158
t.test(biom$resp[biom$dose==0],biom$resp[biom$dose==0.6])

##
## Welch Two Sample t-test
##
## data: biom$resp[biom$dose == 0] and biom$resp[biom$dose == 0.6]
## t = -2.8559, df = 33.35, p-value = 0.007331
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
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## -1.0093388 -0.1697243
## sample estimates:
## mean of x mean of y
## 0.3449054 0.9344369
t.test(biom$resp[biom$dose==0],biom$resp[biom$dose==1])

##
## Welch Two Sample t-test
##
## data: biom$resp[biom$dose == 0] and biom$resp[biom$dose == 1]
## t = -2.5022, df = 29.384, p-value = 0.01815
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -1.0970659 -0.1105461
## sample estimates:
## mean of x mean of y
## 0.3449054 0.9487114

They are 0.487, 0.028, 0.007 and 0.018 for comparison between Dose 0 and Dose 0.05, 0.2, 0.6
and 1, respectively. Then we apply the Bonferonni correction to these unadjusted p-values.
punadj <- c(0.4868,

0.02729,
0.007331,
0.01815)

p.adjust(punadj,method="bonferroni")

## [1] 1.000000 0.109160 0.029324 0.072600

The Bonferonni adjusted p-values are: 1, 0.109, 0.029, and 0.073. We observe a significant
difference only with dose 0.6 (adjusted p-value=0.029).

We now compute the Bonferroni adjusted simultaneous confidence interval for the significant
difference. That is, the 98.75% confidence intervals for the difference between Dose 0 and 0.6.
mean(biom$resp[biom$dose==0])-mean(biom$resp[biom$dose==0.6])

## [1] -0.5895315
t.test(biom$resp[biom$dose==0],biom$resp[biom$dose==0.6],conf.level = ConfLevel)

##
## Welch Two Sample t-test
##
## data: biom$resp[biom$dose == 0] and biom$resp[biom$dose == 0.6]
## t = -2.8559, df = 33.35, p-value = 0.007331
## alternative hypothesis: true difference in means is not equal to 0
## 98.75 percent confidence interval:
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## -1.13459103 -0.04447202
## sample estimates:
## mean of x mean of y
## 0.3449054 0.9344369

Visually check whether the main assumptions:
par(mfrow=c(2,3))
qqnorm(scale(biom$resp[biom$dose==0]),main="Dose 0")
abline(0,1,col="red",lty=2,lwd=3)
qqnorm(scale(biom$resp[biom$dose==0.05]),main="Dose 0.05")
abline(0,1,col="red",lty=2,lwd=3)
qqnorm(scale(biom$resp[biom$dose==0.2]),main="Dose 0.2")
abline(0,1,col="red",lty=2,lwd=3)
qqnorm(scale(biom$resp[biom$dose==0.6]),main="Dose 0.6")
abline(0,1,col="red",lty=2,lwd=3)
qqnorm(scale(biom$resp[biom$dose==1]),main="Dose 1")
abline(0,1,col="red",lty=2,lwd=3)
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We do not observe any major deviation to what can be expected with normally distributed
data. In addition, we observe n=20 responses per dose, which is still reasonable. Hence we
can be quite confident with the appropriateness of the statistical method.

Conclusion/reporting: the data tend to suggest that, overall, the higher the dose the
larger the mean response. However, the only significant difference that we observe (after
adjusting for multiple testing) is between Dose 0 and Dose 0.6, with a difference estimated as
0.59 (98.75% CI=[1.13;0.04], adjusted p-value=0.029).
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Exercise B

Question 1

power.t.test(delta=3,sd=2,power=0.9,sig.level=0.05)

##
## Two-sample t test power calculation
##
## n = 10.40147
## delta = 3
## sd = 2
## sig.level = 0.05
## power = 0.9
## alternative = two.sided
##
## NOTE: n is number in *each* group

We could use 11 mice in each arm, hence 22 mice in total. This is sufficient to have 90%
power to show a difference in mean, if indeed there is a difference of 3 mm3 in mean tumor
growth volume between the two groups and the standard deviation of tumor growth volume
is 2 mm3 in both groups.

Question 2

power.t.test(delta=3,sd=2.5,sig.level=0.05,n=11)

##
## Two-sample t test power calculation
##
## n = 11
## delta = 3
## sd = 2.5
## sig.level = 0.05
## power = 0.7633391
## alternative = two.sided
##
## NOTE: n is number in *each* group

If they include 11 mice in each arm and the standard deviation is 2.5 mm3 instead of the
anticipated value 2 mm3, then the power is only 76% (instead of the planned 90%).
power.t.test(delta=3,sd=3,sig.level=0.05,n=11)
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##
## Two-sample t test power calculation
##
## n = 11
## delta = 3
## sd = 3
## sig.level = 0.05
## power = 0.6070844
## alternative = two.sided
##
## NOTE: n is number in *each* group

If they include 11 mice in each arm and the standard deviation is 3 mm3 instead of the
anticipated value 2 mm3, then the power is only 61% (instead of the planned 90%).
power.t.test(sd=2,sig.level=0.05,power=0.75,n=11)

##
## Two-sample t test power calculation
##
## n = 11
## delta = 2.36173
## sd = 2
## sig.level = 0.05
## power = 0.75
## alternative = two.sided
##
## NOTE: n is number in *each* group

If they include 11 mice in each arm and the standard deviation is 2 mm3, then they can
expect at least 75% chance of getting a significant result showing a difference in mean at
the end of the experiment, if the difference in mean is at least 2.36 mm3. The larger the
difference in mean and the larger the power and a difference in mean of 2.36 mm3 gives a
power of 75%.

Although sample size calculations such as that of question 1 are typically used on their
own to choose a sample size, it is often a very good idea to complement them with more
calculations, such as those of question 2. Using conservative “guesses” for the expected
mean difference and standard deviations can be useful to make sure that the experiment will
provide sufficient power. On the other hand, too conservative sample calculations might lead
to ethical, financial and logistical issues which are also important to consider. Striking the
right balance is often not straightforward, but calculations such as the above, together with
thorough discussions with supervisors and collaborators, will typically help. Planning a study
is not all about statistics, but statistics have an important role to play!
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