Basic Statistic for health researchers

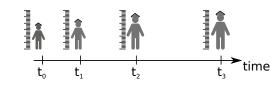
Lecture 8: repeated measurements

Brice Ozenne - email: broz@sund.ku.dk

¹ Section of Biostatistics, Department of Public Health, University of Copenhagen

² Neurobiology Research Unit, University Hospital of Copenhagen, Rigshospitalet.

13-05-2024

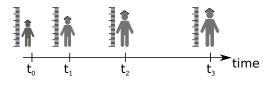

Introduction 000

Multivariate approach

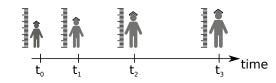
Repeated measurements

Variable(s) measured at different occasions on the same experimental unit.

• Longitudinal study: **outcome** measured on the **same patient** at different timepoints.



					Basic Statistics for health researchers - L8: Repeated measurements				
Introduction OO OOOO	Illustrative example 000000000 000000	Univariate approach 0000000	Multivariate approach 000000 0000000	Conclusion 000000 000	Introduction OO OOOO	Illustrative example 000000000 000000	Univariate approach 00000000	Multivariate approach 000000 0000000	Conclusion 000000 000
Repeated measurements						Repe	ated measurer	ments	

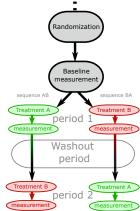

Variable(s) measured at **different** occasions

on the same experimental unit.

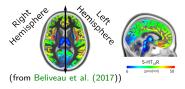
• Longitudinal study: outcome measured on the same patient at different timepoints.

- Variable(s) measured at different occasions on the same experimental unit.
 - Longitudinal study: outcome measured on the same patient at different timepoints.

Can you find other examples?


• what motivates collecting repeated measurements?

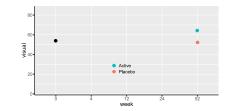
Introduction	Illustrative example	Univariate approach	Multivariate approach	Conclusion
0000	000000000000000000000000000000000000000	0000000	000000	000000 000

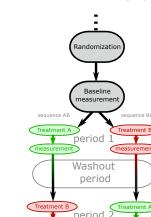

Other designs involving repeated measurements (1/2)

• cross-over: **outcome** measured on the **same patient** under different treatments.

Other designs involving repeated measurements (2/2)

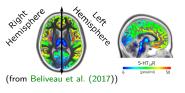
• the same type of measurement on the same patient at different locations.


Basic Statistics for health researchers - L8: Repeated measurements			2 / 51	Basic Statistics for health researchers - L8: Repeated measurements				3 / 51	
roduction	Illustrative example 0000000000 000000	Univariate approach 00000000	Multivariate approach 000000 0000000	Conclusion 000000 000	Introduction 000 00000	Illustrative example 000000000 000000	Univariate approach 0000000	Multivariate approach 000000 0000000	Conclusio 000000 000
Other	designs invol	ving repeated	measurements ((2/2)		Why using rep	peated measur	ements? $(1/3)$	


Introduction 000

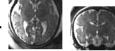
Why using repeated measurements? (1/3)

To better understand the time-dynamic of the exposure:


- is there any treatment effect?
- is there a sustained treatment effect?
- is there an immediate treatment effect?
- how do side effects occur after treatment intake?

Introduction 000

• the same type of measurement on the same patient at different locations.



- test re-test study: **different** ways of **measuring** the same quantity on the same patient.
- \rightarrow assess the stability of a measurement device
- \rightarrow comparison of diagnostic tests (Mc Nemar test in lecture 5)

(from Van Reeth et al. (2012))

(c) Original (Sagittal

(d) HR (Axial)

(e) HR (Coronal (f) HR (Sagitta

High resolution

3 / 51

Basic Statistics for health researchers - L8: Repeated measurements

Introduction 000 00000

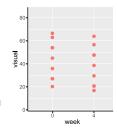
ion Illustrative ex 000000000 000000

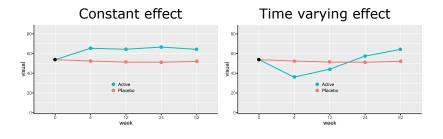
Univariate approach 00000000

Why using repeated measurements? (1/3)

To **better understand** the time-dynamic of the **exposure**:

• how do side effects occur after treatment intake?


approach


Introduction 000 0000 Illustrative example 0000000000 000000 Univariate approach 00000000 variate approach

Why using repeated measurements? (2/3)

To improve estimation of the exposure effect:

- idea: "use each patient as its own control"
- $\rightarrow\,$ account for some confounders: less bias
- $\rightarrow\,$ account for some risk factors: more precision

Basic Statistics for health researchers - L8: Repeated measurements

• is there any treatment effect?

• is there a sustained treatment effect?

• is there an immediate treatment effect?

Introduction

uctionIllustrative example00000000000000000000000

Univariate approacl

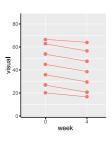
000000

4 / 51

Introduction


Illustrative ex 000000000 000000

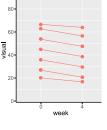
Basic Statistics for health researchers - L8: Repeated measurements


00000000 00000000 Multivariate approach 000000 0000000 Conclusion

5 / 51

Why using repeated measurements? (2/3)

- idea: "use each patient as its own control"
- $\rightarrow\,$ account for some confounders: less bias
- $\rightarrow\,$ account for some risk factors: more precision


⚠ Confounders/risk factors changing across repetitions:

- type of device used to make the measurement
- external events, e.g. time trend, regression to the mean require specific modeling

Why using repeated measurements? (2/3)

To improve estimation of the exposure effect:

- idea: "use each patient as its own control"
- $\rightarrow\,$ account for some confounders: less bias
- $\rightarrow\,$ account for some risk factors: more precision

Introduction 00000

Example of regression to the mean (Kamerman and Vollert, 2022)

Introduction 00000

Multivariate approach

Why using repeated measurements? (3/3)

"It has been recommended that an inclusion threshold of 4 or greater on an 11-point numerical pain rating scale be used when screening for clinical trial participants".

"there are numerous studies demonstrating that increased baseline pain score is associated with a greater placebo response in study control arms"

"By including patients only when their pain is high, on average, it becomes likely that a later assessment will be lower because of natural fluctuation, an effect known as regression to the mean."

To better handle missing values:

- as the follow-up time increases, patient are more likely to drop-out
- regular follow-up can help:
 - to understand the reason(s) for drop-out
 - to limit the loss in statistical power due to drop-out
 - to adjust the analysis for informative drop-out

Multivariate approach

000 00000	00000000	0000000	000000	000000 000	000 00000	000000000	0000000	000000	000000 000		
	Illustration	: ARMD trial	(int, 1997)		Illustration: ARMD trial (int, 1997)						
• (Age-Related Macular Degeneration (ARMD) Trial: comparing interferon-α and placebo outcome Y(t): change in vision over time 					
(Ra	andomization Baseline measurement		follow-up	low-up surement 4 low-up surement 4	Ran	domization Baseline measurement			low-up surement 4 low-up surement 4		
						\Rightarrow luster variable: su		. ,			
					• r	epetition variable	: time				
Basic Statist	Basic Statistics for health researchers - L8: Repeated measurements			10 / 51	Basic Statistic	cs for health researchers - L8: F	Repeated measurements		10 / 51		
Introduction 000 00000	Illustrative example 000000000 000000	Univariate approach 00000000	Multivariate approach 000000 0000000	Conclusion 000000 000	Introduction 000 00000	Illustrative example 000000000 000000	Univariate approach 00000000	Multivariate approach 000000 0000000	Conclusion 000000 000		
	Wide format				Long format						

Data in the wide format (dfW):

Illustrative example

- 1 row = 1 subject ("level 1 data")
- \rightarrow independent replicate of (Y(0), Y(4), Y(12), Y(24), Y(52))

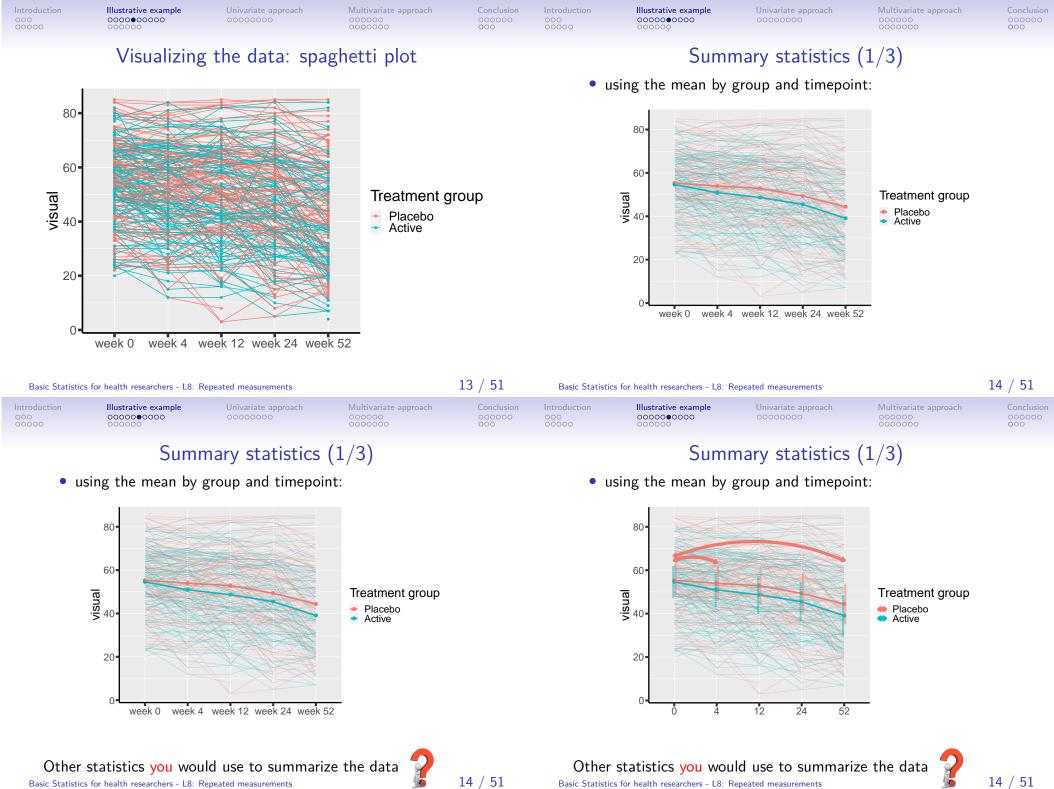
Univariate approach

Multivariate approach

• convenient when working with one or two timepoints

	subject	<pre>treat.f</pre>	visual0	visual4	""	visual52
1	1	Active	59	55		NA
2	2	Active	65	70		55
3	3	Placebo	40	40		NA
4	4	Placebo	67	64		68
5	5	Active	70	NA		NA
6	6	Active	59	53		42

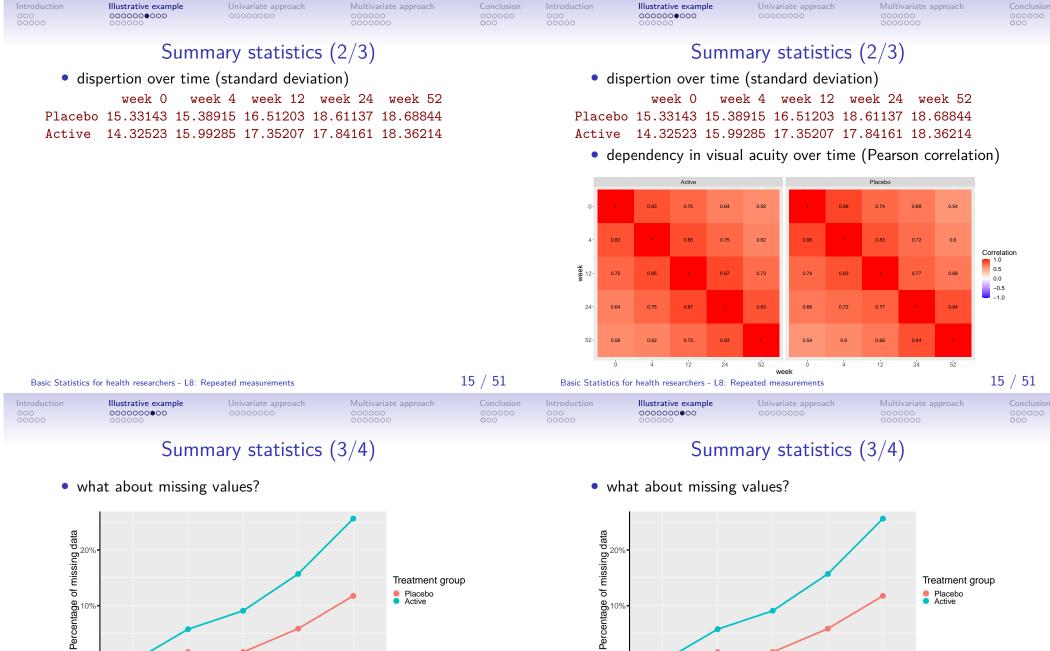
Data in the long format (dfL):


Illustrative example

- 1 row = 1 measurement of 1 subject ("level 0 data")
- convenient when performing operations over all timepoints

Univariate approach

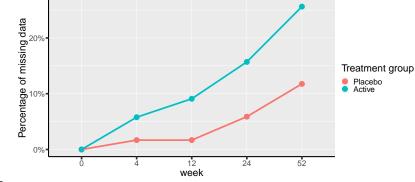
Multivariate approach


	subject	treat.f	week	visual
1	1	Active	0	59
2	1	Active	4	55
3	1	Active	12	45
4	1	Active	24	NA
5	1	Active	52	NA
6	2	Active	0	65
7	2	Active	4	70
8	2	Active	12	65
9	2	Active	24	65
10	2	Active	52	55

Basic Statistics for health researchers - L8: Repeated measurements

14 / 51

Basic Statistics for health researchers - L8: Repeated measurements



24

52

12

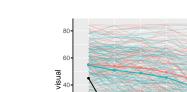
week

Concerns:

- treatment side effect(s) not measured by the outcome
- missing not at random may bias the estimated mean (upward bias if patients with weak vision are more likely to drop)

0%

•	missing data pattern	5:	

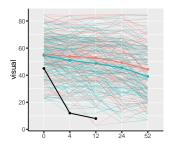

Illustrative example

000000000

Introduction

frequency	pattern	visual0	visual4	visual12	visual24	visual52
188	00000	0	0	0	0	0
24	00001	0	0	0	0	1
4	00010	0	0	0	1	0
8	00011	0	0	0	1	1
1	00110	0	0	1	1	0
6	00111	0	0	1	1	1
2	01000	0	1	0	0	0
1	01011	0	1	0	1	1
6	01111	0	1	1	1	1

Summary statistics (4/4)


Multivariate approach

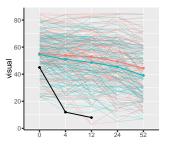
18 / 51 17 / 51 Basic Statistics for health researchers - L8: Repeated measurements Basic Statistics for health researchers - L8: Repeated measurements Multivariate approach Illustrative example Illustrative example 000000000 000000000

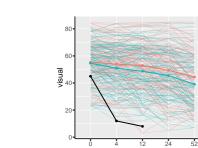
Different types of missing data

• drop-out (patients leaving the study)

Informative censoring vs. censoring completely at random

Different types of missing data


Different types of missing data


• drop-out (patients leaving the study) Informative censoring vs. censoring completely at random

Illustrative example

•00000000

• competing risks (e.g. death) Complete case analysis usually wrong

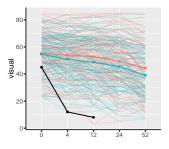
ative example 00000● 00	Univariate approach 00000000			Multivariate a 000000 0000000	
Different	types	of	missin	g	data

• drop-out (patients leaving the study)

vs. censoring completely at random

Complete case analysis usually wrong

• competing risks (e.g. death)


Informative censoring

visual 40

20

Different types of missing data

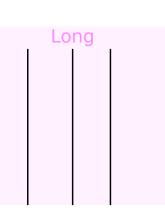
- drop-out (patients leaving the study) Informative censoring vs. censoring completely at random
- competing risks (e.g. death) Complete case analysis usually wrong

• unbalanced data: measurement times differ between patients Selection bias when sick patients have earlier or more frequent visits

A Serious issues: remedies are beyond the scope of this lecture:

• reach out to a statistician!

Basic Statistics for health researchers - L8: Repeated measurements			18 / 51	Basic Statistics for health researchers - L8: Repeated measurements				18 / 51	
Introduction 000 00000	Illustrative example	Univariate approach 0000000	Multivariate approach 000000 0000000	Conclusion 000000 000	Introduction 000 00000	Illustrative example	Univariate approach 0000000	Multivariate approach 000000 0000000	Conclusion 000000 000
Software considerations						Wi	de to long fori	nat	


Data management is more complex with repeated measurements:

• unbalanced data: measurement times differ between patients

Selection bias when sick patients have earlier or more frequent visits

- conversion from wide to long format
- evaluating statistics (e.g. mean) per group of rows (e.g. per time)
- connect points on a graph belonging to the same subject
- \rightarrow 'new' **R** functions can be helpful

Wide											
outcome outcome subject group (time = 0) (time = 4)											
subject	group	(time = 0)	(time = 4)								
1	А	59	55								
2	А	65	70								
3	Р	40	40								

Introduction 000 00000	Illustrative example ○○○○○○○○ ○●○○○○	Univariate approach 00000000	Multivariate approach 000000 0000000	Conclusion 000000 000	Introduction 000 00000	Illustrative example	Univariate approach 0000000	Multivariate approach 000000 0000000	Conclusion 000000 000
	Wide to long format					Wio	de to long fo	ormat	
subjec 1 2 3 	Wide outcome (time = 0)A 59 A 65 P 40	55	Long ect group time outo 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 1 1 1 1 1 1 1 1 1 1 1 1 1	come	subjec 1 2 3 	Wide outcome (time = 0)A59A65P40	(time = 4) 55 70	Longsubjectgrouptimeoutcome1A051A45??0???4??04	9 5
Basic Statistics	for health researchers - L8: R	epeated measurements		20 / 51	Basic Statistics	for health researchers - L8: Re	peated measurements		20 / 51
Introduction 000 00000	Illustrative example	Univariate approach 00000000	Multivariate approach 000000 0000000	Conclusion 000000 000	Introduction 000 00000	Illustrative example	Univariate approach 00000000	Multivariate approach 000000 0000000	Conclusion 000000 000
	R code:	from wide to lo	ong format			R code: sumr	mary statisti	ics with LMMstar	
col.vi	<pre>col.visual <- paste0("visual",c(0,4,12,24,52))</pre>					<code>ize(visual \sim we</code>	ek.num, data	= dfL, na.rm = TRUE)	
						um observed miss 0 240 4 231	0	ng mean sd 0 55 14.9 75 52.5 15.9	

dfL <- reshape(dfW, direction = "long",
<pre>## information to retrieve in dfW</pre>
<pre>varying = col.visual, idvar = "subject",</pre>
column names & values in dfL
<pre>timevar = "week.num", times = c(0,4,12,24,52),</pre>
v.names = "visual")

	subject	<pre>treat.f</pre>	week.num	visual
1	1	Active	0	59
241	1	Active	4	55
481	1	Active	12	45
721	1	Active	24	NA
961	1	Active	52	NA

Basic Statistics for health researchers - L8: Repeated measurements

. . .

. . .

.

. . .

0

4

0

4

0

4

...

Long subject group time outcome

А

А

А

А

Ρ

Ρ

••

. . .

59

55

65

70

40

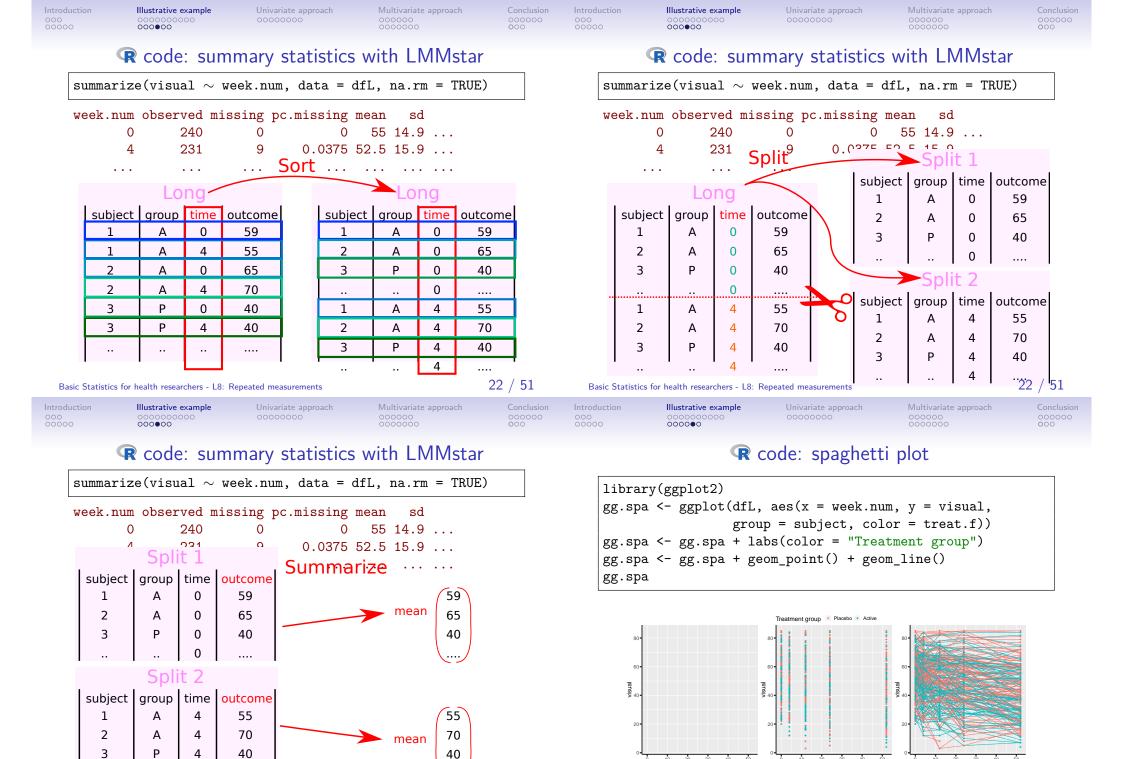
40

. . .

1

1

2


2

3

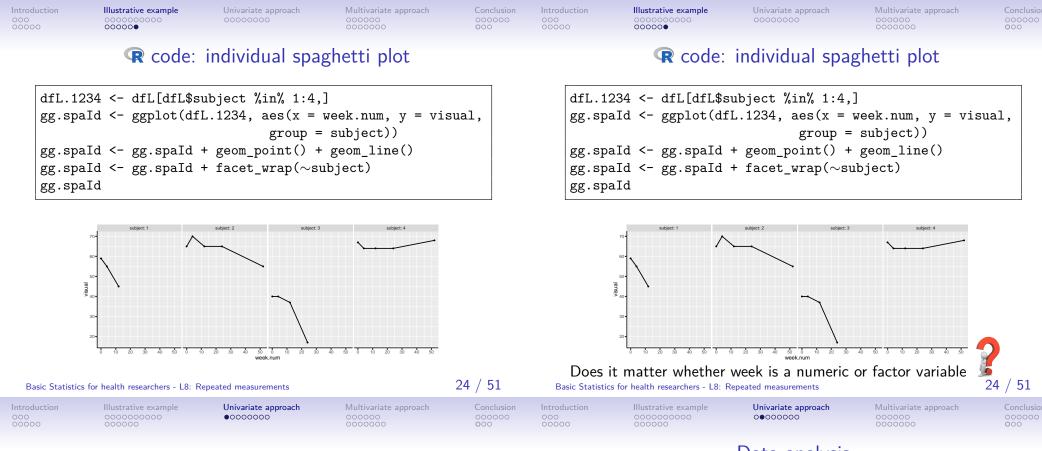
3

••

Basic Statistics for health researchers - L8: Repeated measurements

22 / 51

4


health researchers - L8:

Basic Statistics for

....

Repeated measurements

Basic Statistics for health researchers - L8: Repeated measurements

Data analysis

How would you evaluate the long term treatment effect? (assume no missing data and perfect compliance)

- what would be the estimand?
- how would you carry out the analysis?
- what should you not do?

subject	<pre>treat.f</pre>	visual0	visual4	visual12	visual24	visual52
2	Active	65	70	65	65	55
4	Placebo	67	64	64	64	68
6	Active	59	53	52	53	42
7	Placebo	64	68	74	72	65

Univariate approach

Basic Statistics for health researchers - L8: Repeated measurements

Several possibilities, e.g.:

baseline and week 52

Univariate approach 0000000

Estimand

• $\Psi_{\Delta Y}$: group difference in average vision evolution between

• Ψ_Y : group difference in average vision at week 52

Univariate approach 0000000

Estimand

Several possibilities, e.g.:

- Ψ_Y : group difference in average vision at week 52
- $\Psi_{\Lambda Y}$: group difference in average vision evolution between baseline and week 52

Denoting:

- Y(t) the vision at time t
- G treatment arm (A or P)

F

Expected vision or vision evolution in group g at time t

$$\mathbb{E}\left[Y(t)|G=g\right] = \mu_g(t)$$
$$\mathbb{E}\left[Y(t) - Y(0)|G=g\right] = \mu_g(t) - \mu_g(0)$$

In a randomized trial $\mu_A(0) = \mu_P(0)$ so:

$$\Psi_{\Delta Y} = (\mu_A(52) - \mu_A(0)) - (\mu_P(52) - \mu_P(0))$$
$$= \mu_A(52) - \mu_P(52) = \Psi_Y$$

Basic Statistics for health researchers - L8: Repeated measurements

000	000000000	Univariate approach 000●0000	Multivariate approach
00000	000000		000000

Data analysis - possibilities

• linear regression/t-test on the final value

 $lm(visual52 \sim treat.f, data = armd.wide)$ t.test(visual52 \sim treat.f, data = armd.wide)

linear regression/t-test on the change from baseline

 $lm(visual52-visual0 \sim treat.f, data = armd.wide)$ t.test(visual52-visual0 \sim treat.f, data = armd.wide)

linear regression on the final value adjusted for baseline

```
lm(visual52 \sim visual0 + treat.f, data = armd.wide)
lmm(visual52 \sim visual0 + treat.f, data = armd.wide,
    structure = IND(~treat.f))
```

```
• linear regression of vision as a function of time and group
```

 $lm(visual \sim week * treat.f, data = armd.long)$ Basic Statistics for health researchers - L8: Repeated measurements

Basic Statistics for health researchers - L8: Repeated measurements

В

Univariate approach 00000000

27 / 51

28 / 51

27 / 51

28 / 51

Data analysis - possibilities

• linear regression/t-test on the final value

 $lm(visual52 \sim treat.f, data = armd.wide)$ t.test(visual52 \sim treat.f, data = armd.wide)

• linear regression/t-test on the change from baseline

 $lm(visual52-visual0 \sim treat.f, data = armd.wide)$ t.test(visual52-visual0 \sim treat.f, data = armd.wide)

linear regression on the final value adjusted for baseline

 $lm(visual52 \sim visual0 + treat.f, data = armd.wide)$ $lmm(visual52 \sim visual0 + treat.f, data = armd.wide,$ structure = IND(~treat.f))

• linear regression of vision as a function of time and group

						-	armd.long)	
Зa	sic Statistics for hea	alth re	esearchers	- L	8: Repeated me	easurements		

If the outcome contains several measurements from the **same** subject, the **independent observations assumption** is **violated**:

• required when using t.test, wilcox.test, lm, glm, ...

If ignored, this can lead to:

- incorrect p-values/confidence intervals (almost always)
- **X** biased estimates (unless certain assumptions are met)

Basic Statistics for health researchers - L8: Repeated measurements

ustrative example Uni

Univariate approach

ch

29 / 51

Working on the change - what to adjust for?

Consider a simple model for individual i from the placebo group:

$$Y_i(t) = \mu_0(t) + eta X_i + \gamma Z_i(t) + arepsilon_i(t)$$

- X_i: traits of the individual (e.g. gender)
- Z_i: experimental setting that may change over time (e.g. distance between eyes and eye chart)
- unknown factors $\varepsilon_i(t)$ with variance σ^2

The change in outcome between baseline and week 52 is:

Challenge: non independence

Univariate approach

00000000

If the outcome contains several measurements from the **same** subject, the **independent observations assumption** is **violated**:

• required when using t.test, wilcox.test, lm, glm, ...

If ignored, this can lead to:

- incorrect p-values/confidence intervals (almost always)
- **×** biased estimates (unless certain assumptions are met)

Possible solutions:

- **summary-statistic**: summarize repetitions into one number (e.g. average, area under the curve, peak value)
- univariate: perform separate analyses at each timepoint.
- multivariate: simultaneously analyze all timepoints

on Illustrative example 0000000000 000000

Basic Statistics for health researchers - L8: Repeated measurements

Univariate approach ○○○○○●○○

Conclusion 000000 000

29 / 51

Working on the change - what to adjust for?

Consider a simple model for individual i from the placebo group:

$$Y_i(t) = \mu_0(t) + \beta X_i + \gamma Z_i(t) + \varepsilon_i(t)$$

- X_i: traits of the individual (e.g. gender)
- Z_i: experimental setting that may change over time (e.g. distance between eyes and eye chart)
- unknown factors $\varepsilon_i(t)$ with variance σ^2

The change in outcome between baseline and week 52 is:

$$Y_i(52) - Y_i(0) = \Delta \mu_0 + \gamma(Z_i(52) - Z_i(0)) + \varepsilon_i(52) - \varepsilon_i(0)$$

Introduc 000 00000	ion Illustrative example 0000000000 000000	Univariate approach 00000€00	Multivariate approach 000000 0000000	Conclusion 000000 000	Introduction 000 00000	Illustrative example 0000000000 000000	Univariate approach 000000●0	Multivariate approach 000000 0000000	Conclusion 000000 000
	Working on th	e change - wha	at to adjust for	?	ls	a 't-test on t	he change' a g	;ood idea? $(1/2)$	2)
(Consider a simple mode	el for individual <i>i</i> fr	om the placebo gro	up:					
	$Y_i(t) = $	$\mu_0(t) + \beta X_i + \gamma Z_i(t)$	$(t)+arepsilon_i(t)$		~	makes no assump simple to carry of		atment effect over	time
	• X _i : traits of the ind	dividual (e.g. gend	er)						
	 Z_i: experimental set (e.g. distance betw unknown factors ε_i 	veen eyes and eye o	hart)		~		s for some covaria	tes, even when	
-	he change in outcome	e between baseline a	and week 52 is:		u	nobserved.			
	$Y_i(52) - Y_i(0) = \Delta$	$\mu_0 + \gamma(Z_i(52) - Z)$	$\varepsilon_i(0)) + \varepsilon_i(52) - \varepsilon_i(62)$	0)					
	• we only need to a	adjust for the cha	nge in Z						
	• when $ ho > 1/2$, low		e with ΔY vs. $Y(5)$	2)					
Basic	$\rightarrow {\rm gain~in~statisti} \\ {\rm Statistics~for~health~researchers-L8:} \label{eq:statistics}$	•		30 / 51	Basic Statistic	cs for health researchers - L8: F	Repeated measurements		31 / 51
Introduc 000 00000	ion Illustrative example 000000000 000000	Univariate approach 000000●0	Multivariate approach 000000 0000000	Conclusion 000000 000	Introduction 000 00000	Illustrative example 0000000000 000000	Univariate approach	Multivariate approach 000000 0000000	Conclusion 000000 000

Is a 't-test on the change' a good idea? (1/2)

- makes no assumption about the treatment effect over timesimple to carry out
- … except in presence of missing values! in the previous slides, complete case analysis was performed which is biased in presence of informative censoring.
- naturally accounts for some covariates, even when unobserved.

Is a 't-test on the change' a good idea? (1/2)

- makes no assumption about the treatment effect over time
- simple to carry out
- … except in presence of missing values!
 in the previous slides, complete case analysis was performed
 which is biased in presence of informative censoring.
- naturally accounts for some covariates, even when unobserved.
- does not account for unbalanced in baseline score which can lead to bias if baseline score is correlated to change (Vickers and Altman, 2001).

 \rightarrow use a linear model instead $Y_i(52) = \alpha + \beta X_i + \gamma Y_i(0) + \varepsilon_i(52)$

Illustrative example Univariate approach Multivariate approach Conclusion Introduction Illustrative example Univariate approach Multivariate approach Multiv

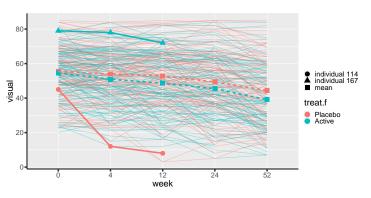
When looking at several timepoints:

	dmean in Placebo	dmean in Active	difference	p.value
week 4	-1.30	-3.51	-2.21	0.04
week 12	-2.27	-5.88	-3.61	0.02
week 24	-5.71	-9.07	-3.36	0.08
week 52	-11.18	-15.48	-4.30	0.06

When looking at several timepoints:

	dmean in Placebo	dmean in Active	difference	p.value
week 4	-1.30	-3.51	-2.21	0.04
week 12	-2.27	-5.88	-3.61	0.02
week 24	-5.71	-9.07	-3.36	0.08
week 52	-11.18	-15.48	-4.30	0.06

▲ multiple testing issue

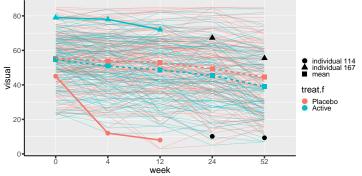

estimates are timepoint-specific: what about week 30?

Basic Statistics for health researchers - L8: Repeated measurements			32 / 51	Basic Statisti	cs for health researchers - L8: R	Repeated measurements		32 / 51	
Introduction 000 00000	Illustrative example 000000000 000000	Univariate approach 00000000	Multivariate approach •••••• •••••••	Conclusion 000000 000	Introduction 000 00000	Illustrative example 0000000000 000000	Univariate approach 0000000	Multivariate approach 00000 000000	Conclusion 000000 000
						Pottor k	andling missig		

Better handling missing values

Previously, individuals 114 and 167 were removed from the analysis because of missing outcome at week 52. Can we do better?

Multivariate approach

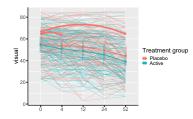


Better handling missing values

Previously, individuals 114 and 167 were removed from the analysis because of missing outcome at week 52. Can we do better?

34 / 51

Yes! Using the observed outcomes and fitted mean & covariance.


Basic Statistics	for health researchers - L8: R	epeated measurements	
Introduction	Illustrative example	Univariate approach	Multivariate approach
000	000000000	0000000	000000

How can we do that? (formula)

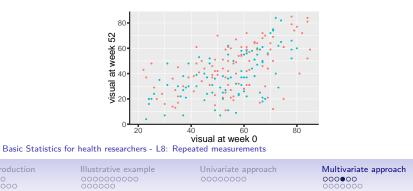
Formally, the expected value at one timepoint given the observed value at another is:

$$\widehat{Y}_i(52) = \mu(52) +
ho(0,52) rac{\sigma(52)}{\sigma(0)} \left(Y_i(0) - \mu(0)
ight)$$

- $\mu(t)$, $\sigma(t)$: mean and variance of the outcome at time t
- $\rho(t_1, t_2)$: correlation between the outcome at time t_1 and t_2

How can we do that? (intuition)

Multivariate approach


000000

Using a linear model relating the outcome at timepoint(s):

- $\bullet\,$ where the subject has data (e.g. week 0)
- $\bullet\,$ where the subject has no data (e.g. week 52)

The relationship is estimated using data from the other subjects.

We then predict the missing value(s) based on the observed one(s) using the fitted linear model

35 / 51

How can we do that? (formula)

Formally, the expected value at one timepoint given the observed value at another is:

$$\widehat{Y}_i(52) = \mu(52) +
ho(0,52) rac{\sigma(52)}{\sigma(0)} \left(Y_i(0) - \mu(0)
ight)$$

- $\mu(t)$, $\sigma(t)$: mean and variance of the outcome at time t
- $\rho(t_1, t_2)$: correlation between the outcome at time t_1 and t_2

 \rightarrow avoids the need for multiple linear regression (one for each combination of timepoints)

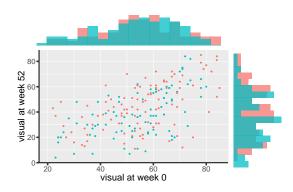
- \rightarrow we need not only to model the mean
 - but also the variance and correlation over time!

 \rightarrow we assume a joint normal distribution over time

Basic Statistics for health researchers - L8: Repeated measurements

Introduction
000 00000

Multivariate approach

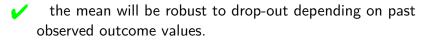

000000

From linear regression to multivariate normal distribution

Multivariate approach

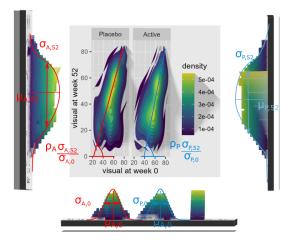
000000

From linear regression to multivariate normal distribution



Basic Statistics for health researchers - L8: Repeated measurements			37 / 51	Basic Statistic	cs for health researchers - L8: R	epeated measurements		37 / 51	
Introduction 000 00000	Illustrative example 0000000000 000000	Univariate approach 00000000	Multivariate approach ooco€o ooooooo	Conclusion 000000 000	Introduction 000 00000	Illustrative example 000000000 000000	Univariate approach 0000000	Multivariate approach 00000● 0000000	Conclusion 000000 000

From linear regression to multivariate normal distribution



(not the case when using complete case analysis)

- the estimation of the mean will be more precise.
- requires a more complex model Х

With complete data, estimates from an adequately parametrized multivariate model will match the results from a t-test.

Introduction	
000	
00000	

0000000 0000000

Univariate approach 00000000 Multivariate approach

Introduction 000 00000 Illustrative example

Univariate approach 00000000 Multivariate approach

Conclusion 000000 000

Implementation

In practice we will use what is called a **mixed model**:

- generalization of the univariate linear model (1m in \square)
- need more inputs: variance and correlation structure
- format of these "new" inputs is software dependent

There are several \mathbf{R} package implementing mixed models:

- nlme and lme4: traditional ones (upcoming mmrm)
- LMMstar: narrower scope but should be more user-friendly

Example in \mathbf{R} with 2 timepoints

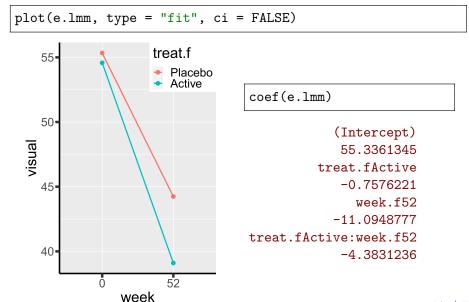
dfL52 <- dfL[dfL\$week.num %in% c(0,52),]	
dfL52\$week <- factor(dfL52\$week.num, levels = c(0,52))

e.lmm <- lmm(visual ~ treat.f*week, ## mean structure repetition = ~ week | subject, ## data structure structure = "UN", ## variance/correlation structure data = dfL52)

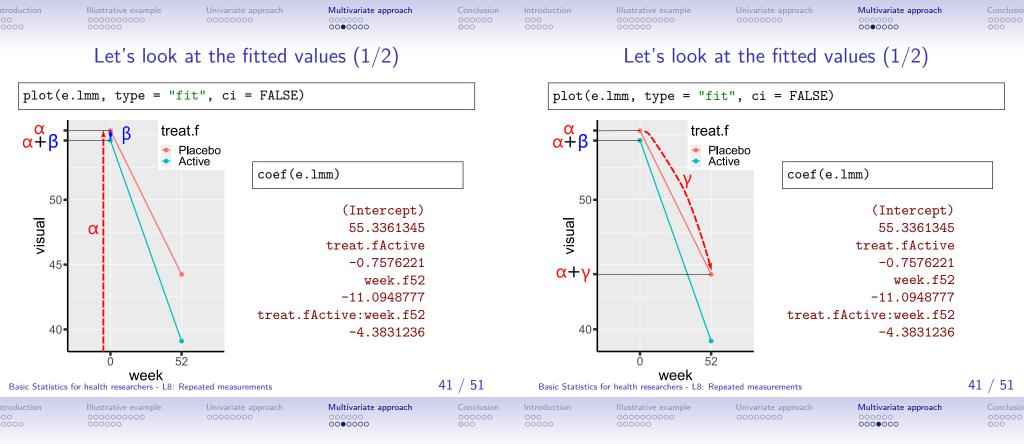
model.tables(e.lmm)

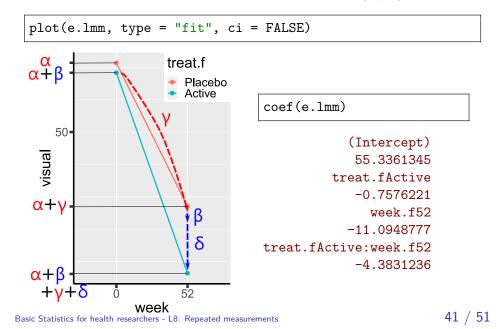
	estimate	se	df	lower	upper p	.value
(Intercept)	55.34	1.4	238	52.6	58.0 0	.0e+00
treat.fActive	-0.76	1.9	238	-4.6	3.0 6	.9e-01
week52	-11.09	1.6	196	-14.2	-8.0 1	.6e-11
<pre>treat.fActive:week52</pre>	-4.38	2.3	198	-8.9	0.1 5	.5e-02

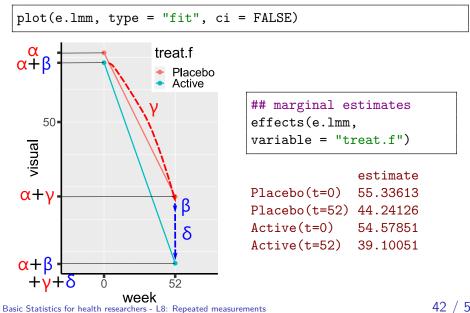
Basic Statistics	for health researchers - L8: R	Repeated measurements		39 / 51	Basic Statistic	cs for health researchers - L8: R	Repeated measurements		40 / 51
Introduction 000 00000	Illustrative example 0000000000 000000	Univariate approach 00000000	Multivariate approach ○○○○○○ ○●○○○○○	Conclusion 000000 000	Introduction 000 00000	Illustrative example 000000000 000000	Univariate approach 00000000	Multivariate approach	Conclusion 000000 000

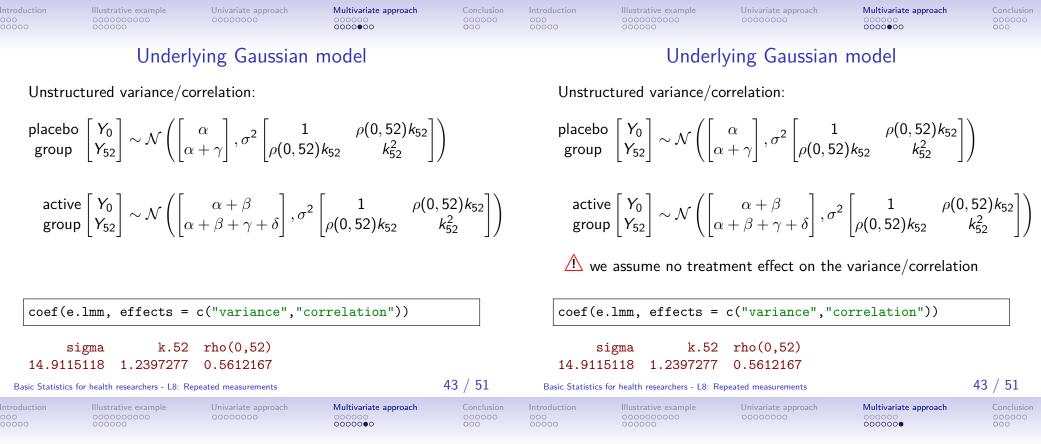

40 / 51

Example in \mathbf{R} with 2 timepoints

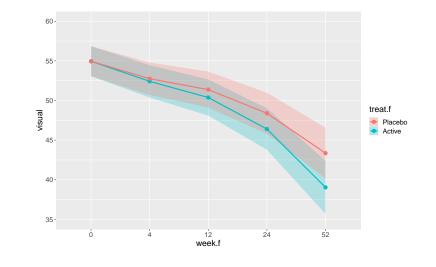

dfL52 <- dfL[dfL\$week.num %in% c(0,52),] dfL52\$week <- factor(dfL52\$week.num, levels = c(0,52)) e.lmm <- lmm(visual \sim treat.f*week, ## mean structure repetition = \sim week | subject, ## data structure structure = "UN", ## variance/correlation structure data = dfL52)model.tables(e.lmm) estimate se df lower upper p.value (Intercept) 55.34 1.4 238 52.6 58.0 0.0e+00 treat.fActive -0.76 1.9 238 -4.6 3.0 6.9e-01 -11.09 1.6 196 -14.2 -8.0 1.6e-11 week52 treat.fActive:week52 -4.38 2.3 198 -8.9 0.1 5.5e-02


Let's look at the fitted values (1/2)


Basic Statistics for health researchers - L8: Repeated measurements



Let's look at the fitted values (1/2)



Treatment effect proportional to duration

dfL\$week.f <- as.factor(dfL\$week.num)
<pre>## week.f: categorical variable ("0", "4",)</pre>
<pre>## week: numeric variable (0, 4,)</pre>
eLin.lmm <- lmm(visual \sim 0 + week.f + week.num:treat.f,
repetition = \sim week.f subject,
structure = "UN",
data = dfL)
model.tables(eLin.lmm)

	estimate	se	df	lower	upper	p.value	
week.f0	54.954	0.961	239	53.06	56.8469	0.000	
week.f4	52.748	1.036	240	50.71	54.7882	0.000	
week.f12	51.369	1.154	257	49.10	53.6426	0.000	
week.f24	48.391	1.314	281	45.80	50.9776	0.000	
week.f52	43.354	1.621	232	40.16	46.5471	0.000	
week.num:treat.fActive	-0.083	0.041	187	-0.16	-0.0023	0.044	
Basic Statistics for health researchers - L8:	Repeated measu	urements				44 /	/ 51

Visualisation

Introduction 000 00000	n Illustrative example 0000000000 000000	Univariate approach 0000000	Multivariate approach 000000 0000000	Conclusion • 00000 • 00	Introduction 000 00000	Illustrative example 0000000000 000000	Univariate approach 00000000	Multivariate approach 000000 0000000	Conclusion 00000 000
						Why	using mixed m	odels?	
						alize t-test on the quivalent with 2 e	change: ndpoints and no n	nissing data	
		Warp-up			• fi	o need to model t	ng values: tead of complete c he cause of censor for the mean/cov	ring	
					Can e	ase interpretability	/:		
					• ir	mposing constant	or linear treatment	t effect over time	
Basic St	tatistics for health researchers - L8:	Repeated measurements		46 / 51	Basic Statistic	cs for health researchers - L8: F	Repeated measurements		47 / 51
Introduction	n Illustrative example 0000000000 000000	Univariate approach 0000000	Multivariate approach 000000 0000000	Conclusion 000000 000	Introduction 000 00000	Illustrative example 0000000000 000000	Univariate approach 00000000	Multivariate approach 000000 0000000	Conclusion ○○○●○○ ○○○
	When no	ot to use mixed	models?				Conclusion		

No missing data and only two timepoints

• a univariate analysis on the change from baseline/ANCOVA is often enough

Very small sample size:

- model parameters can be difficult to estimate
- possible inflation of type 1 error (can be solved with specialized tests)

In presence of competing risks (e.g. death)

• mixed model are not a "magic" solution for missing values ...

Collecting several measurements per subject is a good idea:

- give more insight into the treatment effect
- better handling of missing data
- reduce uncertainty/confounding (each subject is its own control)

Basic Statistics for health researchers - L8: Repeated measurements

Scheduled measurement times is recommended.

But is also challenging:

- more demanding for the patient (A drop-out!)
- more complex to organize (e.g. ensure subjects follow the schedule)
- often require dedicated/advanced statistical tools

Introduction 000 00000	Illustrative example 0000000000 000000	Univariate approach 00000000	Multivariate approach 000000 0000000	Conclusion ○○○○●○ ○○○	Introduction 000 00000	Illustrative example 0000000000 000000	Univariate approach 00000000	Multivariate 000000 0000000	approach	Conclusion ○○○○● ○○○
	What	we have seen	today			W	ant to know m	ore?		
•	Introduction to repe definition and examples o benefit of having repeate challenges for the statisti	of study design d measurements	ts		• 5	course: Statistical analysis course director: J	of correlated and i Iulie Forman)	repeated me	easuremo	ents
•	Example of longitud descriptive statistics and concerns due to the prese what is a long and wide f	plots for repeated meas ence of missing values	surements		,	on the same subjects, or by applying different appropriate models for the analysis of e.g. bas For supplementary reading we recommend:	elated quantitative data arising e.g. when taking obsert treatment to different parts of the body. Putfalls of tradi eline follow-up studies, cross-over studies, and cluster d J H. Ware, Applied Longitudinal Analysis (2nd editic	tional statistical analyses will be randomized trials will be exemp	discussed and	
•	Univariate approach adjustment resulting from treatment effect assessme pros and cons	n working on change fro				1 group	k on KB (free download for KU students). Topics nents and clustered data. Basic theory of linear mixs studies. Handling repeated measurements in SAS/R. for balanced and unbalanced designs. Analysis of ra studies.		Suggested reading* FLW 1-3. Tutorial 1. FLW 5-7. Tutorial 2.	
•	Multivariate approact intuition behind handling parametrization of a linea	missing values using a				4 Select topics in linear mixed models 5 Models for binary and count data.	a. Variance components. Multi-level models. The lin . Cross-over studies. Repeatability and reproducibil . Generalized linear mixed models. Marginal models equations. sing data. Consequences and statistical handling.	ity of measurement methods.	FLW 8, 21 & 22. Lecture notes only. FLW 10-16 FLW 17-18	
	pros and cons tics for health researchers - L8: R	epeated measurements	,	50 / 51	Basic Statistic	cs for health researchers - L8:	Repeated measurements			51 / 51
Introduction 000 00000	Illustrative example 000000000 000000	Univariate approach 00000000	Multivariate approach 000000 0000000	Conclusion	Introduction 000 00000	Illustrative example 0000000000 000000	Univariate approach 0000000	Multivariate 000000 0000000	approach	Conclusion ○○○○○○ ●○○
		Reference I					Reference II			

- (1997). Interferon alfa-2a is ineffective for patients with choroidal neovascularization secondary to age-related macular degeneration: Results of a prospective randomized placebo-controlled clinical trial. Archives of Ophthalmology, 115(7):865–872.
- Beliveau, V., Ganz, M., Feng, L., Ozenne, B., Højgaard, L., Fisher, P. M., Svarer, C., Greve, D. N., and Knudsen, G. M. (2017). A high-resolution in vivo atlas of the human brain's serotonin system. *Journal of Neuroscience*, 37(1):120–128.
- Kamerman, P. R. and Vollert, J. (2022). Greater baseline pain inclusion criteria in clinical trials increase regression to the mean effect: a modelling study. *Pain*, 163(6):e748–e758.

- Van Reeth, E., Tham, I. W., Tan, C. H., and Poh, C. L. (2012). Super-resolution in magnetic resonance imaging: a review. *Concepts in Magnetic Resonance Part A*, 40(6):306–325.
- Vickers, A. J. and Altman, D. G. (2001). Analysing controlled trials with baseline and follow up measurements. *Bmj*, 323(7321):1123–1124.

Int oc

Int oc

Introduction	
000	

Multivariate approach 000000 0000000 Conclusion Introduction

Illustrative exam 0000000000 000000 Univariate approach 00000000 Multivariate approach Conclusion

Equivalence t-test and mixed model (1/2)

t-test (complete case week 0 and 52):

keep.col <- c("subject","treat.f","visual0","visual52")
dfW.CC <- na.omit(armd.wide[,keep.col])
dfW.CC\$change <- dfW.CC\$visual52 - dfW.CC\$visual0
t.test(change ~ treat.f, data = dfW.CC)</pre>

mean in group Placebo	mean in group Active	p.value
-11.18095238	-15.4777778	0.06105875

t-test via 1mm (complete case week 0 and 52):

estimate p.value (Intercept) -11.180952 2.940177e-10 treat.fActive -4.296825 6.105844e-02 Basic Statistics for health researchers - L8: Repeated measurements

54 / 51

Equivalence t-test and mixed model (2/2)

Mixed model on complete case data (week 0 and 52) with stratified unstructured covariance matrix:

dfL52.CC <- dfL52[dfL52\$subject %in% dfW.CC\$subject,]
<pre>e2CC.lmm <- lmm(visual ~ week*treat.f, data = dfL52.CC,</pre>
<pre>model.tables(e2CC.lmm)[c(2,4),c("estimate","p.value")]</pre>
estimate p.value
week52 -11.180952 2.943139e-10
week52:treat.fActive -4.296825 6.105887e-02

Basic Statistics for health researchers - L8: Repeated measurements