Outline

The multiple linear model
ILO: to outline what the multiple linear model is about
ILO: to list important methods that are special cases of the model
ILO: to describe the connection with the t -test

Day 7: Multiple linear regression, confounding, interaction

Paul Blanche

Section of Biostatistics, University of Copenhagen

Why multiple regression?
ILO: to exemplify when a multiple regression can be better than a univariate analysis
ILO: to describe the connection with ANOVA

ANCOVA and model checking

ILO: to use the ANCOVA and interpret the results
ILO: to evaluate some modeling assumption
Digression: Table-I and the statistical analysis plan (SAP)
ILO: to repeat widely recommended practices in statistics
Interaction and subgroup analysis
ILO: to interpret models with interaction and exemplify their usefulness ILO: to contrast the use of these models and subgroup analyses

Case: vitamin D data

Data, $n=412$:

(also data on sun exposure: sunexp)

Outcome: vitamin D measured in morning blood samples, after an overnight fast (nmol/l).

```
Reference:
    - Andersen and Skovgaard. Regression with linear predictors. Springer, 2010
    - Andersen et al., Eur. J. Clin. Nutr. (2005)
- Andersen and Skovgaard. Regression with linear predictors. Springer, 2010
Andersen et al., Eur. J. Clin. Nutr. (2005)
```

Note: the slides of today borrow many examples and explanations presented in more details in the above textbook reference.
3/68

Remarks on the case study and log-transformation

- It is common, and often sensible, to study the log of a concentration, instead of the concentration itself, when using linear regression. This is because:
\Rightarrow concentration cannot be negative.
> the variability between observations is often higher for higher concentrations.
- We will log-transform in our case study:

$$
\text { outcome }=\log _{10}(\text { vitamin } D \text { concentration })
$$

mol/I)

3/68
${ }^{68} 1_{\text {See e.g. Keene "The log transformation is special:" Statistics in Medicine } 14.8 \text { (1905): :811-819. }}$

Remarks on the case study and log-transformation

- It is common, and often sensible, to study the log of a concentration, instead of the concentration itself, when using linear regression. This is because:
$>$ concentration cannot be negative.
$>$ the variability between observations is often higher for higher concentrations.
- We will log-transform in our case study:

$$
\text { outcome }=\log _{10}(\text { vitamin } \mathrm{D} \text { concentration })
$$

- But, it is not always needed and important to log-transform!

> Do NOT SYSTEMATICALLY LOG-TRANSFORM WITHOUT A GOOD REASON!

- It is best to pre-specify the choice of log-transforming or not based on background knowledge (i.e. your experience of that of others reported in the literature). ${ }^{1}$
- Sometimes, but not always, it is interesting to present and interpret the results on the original scale, using the back-transformation (exp).

The multiple linear model

The i-th observation (e.g. from subject i) of the outcome Y is described as:

$$
Y_{i}=\alpha+\beta_{1} x_{i}+\beta_{2} z_{i}+\cdots+\varepsilon_{i}
$$

- x_{i}, z_{i}, \ldots are the predictor (i.e. explanatory) variables / covariates.
- the linear predictor $\alpha+\beta_{1} x_{i}+\beta_{2} z_{i}+\ldots$ is the mean outcome for any subject i having covariate values x_{i}, z_{i}, \ldots
- ε_{i} 's are individual 'error' terms ("random/unexplained deviation from the mean") assumed normally distributed with zero mean and the same variance σ_{ε}^{2} regardless of the values x_{i}, z_{i}, \ldots

Model assumptions (1-2 important, 3 not always):

1. Individual observations are independent.
2. The variance of 'error' terms is the same for all groups (homogeneity).
3. 'Error' terms are normally distributed.

The multiple model generalizes simpler models

Many simple settings can be thought as a special case of the multiple linear model.

Which and why?

- t-test (Lecture 2)
- one binary predictor variable
- univariate linear model (Lecture 3)
- one quantitative predictor variable
- ANOVA (Lecture 4)
- one categorical predictor variable (one-way ANOVA)
- two categorical predictor variables (two-way ANOVA)
- ANCOVA (today's Lecture)
- one categorical and one quantitative predictor variable

Note: this holds when using t-test and ANOVA that assume the same standard deviation for all groups (which is not the default/recommended choice for the t-t

Case: one binary variable

- Research question: is the mean log vitamin D different between elderly women (>69) having a "normal" weight and those being "overweight"?
- Predictor variable(s): body mass index "normal" (18.5-25) or "overweight" (>25).
- Data example: Irish women, $n=42(16+25)$.
- Linear model:

$$
Y_{i}=\alpha+\beta z_{i}+\varepsilon_{i}
$$

with

$$
z_{i}= \begin{cases}1 & \text { if } i \text { is "overweight" } \\ 0 & \text { if } i \text { has a "normal" weight }\end{cases}
$$

[^0]R code \& default output

R code:

vitaminD\$bmigroup <- factor (as.numeric(vitaminD\$bmi > 25)) lm1 <- $\operatorname{lm}(\log 10(v i t d) \sim b m i g r o u p, d a t a=i r l w o m e n) ~$ summary (lm1)

Output:

Coefficients:

$$
\begin{array}{lrrrr}
& \text { Estimate } & \text { Std. Error t value } \operatorname{Pr}(>|\mathrm{t}|) \\
\text { (Intercept) } & 1.71987 & 0.04554 & 37.765 & <2 \mathrm{e}-16 * * * \\
\text { bmigroup1 } & -0.12682 & 0.05832 & -2.175 & 0.0358 *
\end{array}
$$

R code \& default output
 R code:

vitaminD\$bmigroup <- factor (as.numeric(vitaminD\$bmi > 25)) lm1 <- lm(log10(vitd)~bmigroup,data=irlwomen)
summary (lm1)

Output:

Coefficients:

$$
\begin{array}{lrrrr}
& \text { Estimate Std. Error t value } \operatorname{Pr}(>|\mathrm{t}|) \\
\text { (Intercept) } & 1.71987 & 0.04554 & 37.765 & <2 \mathrm{e}-16 * * * \\
\text { bmigroup1 } & -0.12682 & 0.05832 & -2.175 & 0.0358 *
\end{array}
$$

R code:

tapply(log10(irlwomen\$vitd), irlwomen\$bmigroup, mean)
diff(tapply(log10(irlwomen\$vitd), irlwomen\$bmigroup, mean))

Output:

1.7198731 .593053
-0.1268206

Visualizing the raw data \& results

The regression line passes through the sample means, i.e. the two estimated means corresponds to the sample means in each group.

Formatted results and comparison to that of t.test () R code:

FormatResLm <- function(fit) \{
cbind.data.frame(round(cbind(Est=fit\$coef, confint(fit)),2),
'p-value'=format.pval (summary (fit)\$coefficients $[, " \operatorname{Pr}(>|t|) "]$, digits=3))\}
FormatResLm (lm1)
Output:

$$
\text { Est } 2.5 \text { \% } 97.5 \text { \% p-value }
$$

(Intercept) $1.72 \quad 1.63 \quad 1.81<2 \mathrm{e}-16$
$\begin{array}{lllll}\text { bmigroup1 } & -0.13 & -0.24 & -0.01 & 0.0358\end{array}$

R code:

t.test (log10(irlwomen\$vitd) ~ irlwomen\$bmigroup, var.equal=TRUE)

Output:

Two Sample t-test
data: log10(irlwomen\$vitd) by irlwomen\$bmigroup
$t=2.1745, \mathrm{df}=39, \mathrm{p}$-value $=0.0358$
alternative hypothesis: true difference in means is not equal to 0
5 percent confidence interval
$0.008853898 \quad 0.244787253$
sample estimates:
mean in group 0 mean in group 1
$\begin{array}{ll}10 / 88 & 1.719873 \\ 1.593053\end{array}$

Conclusions with only one binary variable

Digression: median and back-transformation (1/2)

R code:

rbind(Mean=tapply(X=log10(irlwomen\$vitd), INDEX=irlwomen\$bmigroup, FUN=mean), Median=tapply (X=log10(irlwomen\$vitd), INDEX=irlwomen\$bmigroup, FUN=median))

Output:

$\begin{array}{lrr} & 0 & 1 \\ \text { Mean } & 1.719873 & 1.593053\end{array}$
Median 1.7188831 .613842
Here, because the "model" for the mean is a good model for the median (M), because median $(\log (Y))=\log (\operatorname{median}(Y))$ and:

$$
\log _{10}\left(\widehat{M}_{1}\right)-\log _{10}\left(\widehat{M}_{0}\right)=\log _{10}\left(\frac{\widehat{M}_{1}}{\widehat{M}_{0}}\right)=-0.12682
$$

then $\widehat{M}_{1} / \widehat{M}_{0}=10^{-0.12682}=0.75$; hence we can conclude that we estimate that overweight women have a 25% lower median vitamin D concentration compared to the normal weight women. ${ }^{2}$
${ }^{12 / 68}$ 2See similar remarks in Lecture 3.

Outline

The multiple linear model
ILO: to outline what the multiple linear model is about
ILO: to list important methods that are special cases of the model
ILO: to describe the connection with the t-test
Why multiple regression?
ILO: to exemplify when a multiple regression can be better than a univariate analysis
ILO: to describe the connection with ANOVA

ANCOVA and model checking
ILO: to use the ANCOVA and interpret the results

Digression: Table-I and the statistical analysis plan (SAP)
ILO: to repeat widely recommended practices in statistics
Interaction and subgroup analysis
ILO: to interpret models with interaction and exemplify their usefulness

Details: this is because according to our model and the mathematical properties of the log-normal distribution, we model the two mean vitamin D concentrations in each group as $10^{\alpha+\sigma_{\varepsilon}^{2} / 2}$ and $10^{\alpha+\beta+\sigma_{\varepsilon}^{2} / 2}$.

Why multiple regression?

- better adjusting / explaining (main focus in this course)
- better predict or gain power (more advanced topic, touched upon in lecture 4)

Same reasons as for why logistic regression can be more useful than simpler 2×2 tables analyses.

- Useful when we want to make comparisons with respect to one factor/variable (e.g. treatment or exposure) among individuals otherwise similar with respect to other variables that we adjust for (e.g. age, sex, comorbidity...).
- Multiple regression is a tool to deal with confounding and unbalanced designs.
- Multiple regression offers an alternative to stratification (i.e. subgroup analysis) when the data are not very large or/and we can assume that some differences are "similar" within different subgroups (\rightarrow).

Multiple regression to limit confounding

We often compare two groups with the aim to get a "tentative" causal interpretation of the statistical association that we can show. To do so, we adjust on some variables to make a comparison among subjects as similar as possible with respect to some relevant variables.

Extreme, hypothetical, example of confounding:

Digression: quote about "adjustment" via multiple regression
"Adjustments using a model attempt to compare people who are not directly comparable - people of somewhat different ages or smoking habits - removing these differences using a mathematical structure that has elements estimated from the data at hand."

Paul Rosenbaum, Design of Observational Studies (2009, $2^{\text {nd }}$ Edition, page 3)

Case: comparing countries

Step 1: Initial research question: "Is the average log-vitamin D different in the Irish and Polish population of elderly women?"

Step 2: Quick look at the collected data via a typical "Table I":

		Ireland $(\mathrm{n}=41)$	Poland $(\mathrm{n}=65)$
Age	median [iqr]	$72[70.8,73.3]$	$71.7[70.4,72.6]$
BMI	$18.5-25$	$16(39 \%)$	$12(19 \%)$
	>25	$25(61 \%)$	$53(81 \%)$
Sun exposure	avoid	$16(39 \%)$	$26(40 \%)$
	sometimes	$21(51 \%)$	$34(52 \%)$
	prefer	$4(10 \%)$	$5(8 \%)$
Vitamin D intake	median [iqr]	$5.5[3.2,12.1]$	$5.2[3.0,11.9]$

Step 3: Updated research question: "Is there a difference in average log-vitamin D between Irish and Polish elderly women having the same BMI group?"4

Case: comparing countries while "adjusting" for BMI group

- Research question: is there a difference in average log-vitamin D between Irish and Polish elderly women having the same BMI group?
- Predictor variable(s):
- BMI "normal" (18.5-25) / "overweight" (>25).
- Country Ireland / Poland
- Data example: Irish and Poland women, $n=106(41+65)$.
- Linear model: $\quad Y_{i}=\alpha+\beta_{1} x_{i}+\beta_{2} z_{i}+\varepsilon_{i}$
$x_{i}=\left\{\begin{array}{ll}1 & \text { if } i \text { is Polish } \\ 0 & \text { if } i \text { is Irish }\end{array} \quad z_{i}=\left\{\begin{array}{lll}1 & \text { if } i & \text { is "overweight" } \\ 0 & \text { if } i \text { has a "normal" weight }\end{array}\right.\right.$

This is a two-way ANOVA model! (without interaction)

19/68

Parameters interpretation

According to the model, the means of log-vitamin D are:

BMI Country	Ireland	Poland
"Normal"	α	$\alpha+\beta_{1}$
"Overweight"	$\alpha+\beta_{2}$	$\alpha+\beta_{1}+\beta_{2}$

- α : mean outcome for Irish with "normal" BMI (reference group).
- β_{1} : difference in mean outcome between Irish and Polish among women of the same BMI group (whatever it is).
- β_{2} : difference in mean outcome between women with "overweight" and those having a "normal" BMI, among women of the same country (whatever it is).

R code \& default output

R code:

```
lm2 <- lm(log10(vitd) ~ Country + bmigroup, data = irlpolwomen)
``` summary (lm2)

\section*{Output:}

Coefficients:
\begin{tabular}{lrrrrr}
& Estimate & Std. Error t value \(\operatorname{Pr}(>|t|)\) \\
(Intercept) & 1.72854 & 0.04016 & 43.040 & \(<2 e-16\) & \(* * *\) \\
CountryPoland & -0.14164 & 0.03947 & -3.589 & \(0.000511 * * *\) \\
bmigroup1 & -0.14103 & 0.04360 & -3.235 & \(0.001638 * *\)
\end{tabular}

Conclusions?

Results with \(95 \%\) Cls

\section*{R code:}

FormatResLm(1m2)

\section*{Output:}
\begin{tabular}{lrrrrr}
& Est & \(2.5 \%\) & \(97.5 \%\) & p-value \\
(Intercept) & 1.73 & 1.65 & 1.81 & \(<2 e-16\) \\
CountryPoland & -0.14 & -0.22 & -0.06 & 0.000511 \\
bmigroup1 & -0.14 & -0.23 & -0.05 & 0.001638
\end{tabular}

\section*{Conclusions?}
\({ }^{21 / 68}\)

\section*{Visualizing the raw data}

- Observed (sample) means: blue

\section*{Visualizing the raw data \& results}

- Observed (sample) means: blue
\(\rightarrow\) Estimated means (from the model): black

\section*{Outline}

The multiple linear model
ILO: to outline what the multiple linear model is about
ILO: to list important methods that are special cases of the model

Why multiple regression?
ILO: to exemplify when a multiple regression can be better than a univariate
analysis

ANCOVA and model checking
ILO: to use the ANCOVA and interpret the results
ILO: to evaluate some modeling assumption
Digression: Table-I and the statistical analysis plan (SAP)
ILO: to repeat widely recommended practices in statistics
Interaction and subgroup analysis
ILO: to interpret models with interaction and exemplify their usefulness

Case: comparing countries while "adjusting" for BMI
- Research question: is there a difference in mean log-vitamin D between Irish and Polish elderly women having the same BMI?
- Predictor variable(s):
- BMI as a quantitative (continuous) variable
- Country Ireland / Poland
- Data example: Irish and Poland women, \(n=106(41+65)\).
- Linear model: \(\quad Y_{i}=\alpha+\beta_{1} x_{i}+\beta_{2} z_{i}+\varepsilon_{i}\)
\[
x_{i}=\left\{\begin{array}{ll}
1 & \text { if } i \\
\text { is Polish } \\
0 & \text { if } i
\end{array} \quad \text { is Irish } \quad z_{i}=\text { BMI of subject } i .\right.
\]

This is a called an ANCOVA model (ANalysis of COVAriance), because we "adjust" with a quantitative/continuous covariate.

\section*{R code:}
irlpolwomen\$bmi5 <- irlpolwomen\$bmi/5
 summary (lm3)

\section*{Output:}

Coefficients:
Estimate Std. Error t value \(\operatorname{Pr}(>|t|)\)
\begin{tabular}{lrrrr}
(Intercept) & 2.04273 & 0.12291 & 16.620 & \(<2 \mathrm{e}-16{ }^{* * *}\) \\
bmi5 & -0.07593 & 0.02262 & -3.357 & 0.00110
\end{tabular}\({ }^{* *}\)
\(\beta_{2}\) : difference in mean outcome between two women, one having a of the same country (whatever it is).

Note: this holds whatever the two BMI values being compared, as long as there is a one unit difference between the two. This is the so called "linearity assumption".

\section*{R code:}
irlpolwomen\$bmi5 <- irlpolwomen\$bmi/5
lm3 <- lm(log10(vitd) ~ bmi5 + Country, data = irlpolwomen) summary (lm3)

\section*{Output:}

Coefficients:
Estimate Std. Error t value \(\operatorname{Pr}(>|t|)\)
\begin{tabular}{lrrrl}
(Intercept) & 2.04273 & 0.12291 & 16.620 & \(<2 e-16 * * *\) \\
bmi5 & -0.07593 & 0.02262 & -3.357 & \(0.00110^{* *}\) \\
CountryPoland & -0.13135 & 0.04005 & -3.280 & \(0.00142^{* *}\)
\end{tabular}

\section*{R code:}

FormatResLm(lm3)

\section*{Output:}
\begin{tabular}{lrrrr}
& Est & \(2.5 \%\) & \(97.5 \%\) & p-value \\
(Intercept) & 2.04 & 1.80 & 2.29 & \(<2 e-16\) \\
bmi5 & -0.08 & -0.12 & -0.03 & 0.00110 \\
CountryPoland & -0.13 & -0.21 & -0.05 & 0.00142
\end{tabular}

CountryPoland -0.13-0.21 -0.05 0.00142
27/68

\section*{Visualizing the raw data \& results}

Note: an ANCOVA model is simply a regression model for parallel regression lines.
- \(\beta_{2}\) : is the common slope of the two lines.
- \(\beta_{1}\) : is the size of the vertical distance between the two lines.

Digression: a rather common plot with RCTs

Pretreatment and post-treatment scores in each group showing fitted lines. Squares show mean values for the two groups. The estimated
difference between the groups from analysis of covariance is the vertical distance between the two lines

Outcome: "100 point rating scale of [shoulder] pain and function, with lower scores indicating poorer outcome" Source: Vickers \& Altman. Analysing controlled trials with baseline
and follow up measurements. BMJ. 2001 Nov 10;323(7321):1123-4

It is not uncommon to show this kind of plot when analysing Randomized Controlled Trials (RCT) with baseline and follow up measurements \((\rightarrow\) Lecture 8).

Estimate of \(\sigma_{\varepsilon}\) (standard deviation of the 'error' terms)

In the output of the summary(), "Residual standard error: 0.1921 " is the estimate of \(\sigma_{\varepsilon}\). It is computed "nearly" as the standard deviation of the residuals represented by the vertical black dashed bars. It quantifies the vertical "spread" of \(\operatorname{inc}_{30 / 68}\) individual observations below/above the corresponding regression lines.

\section*{Comparing adjusted and unadjusted results}

- crosses represent the mean of BMI (x-axis) and outcome (y-axis) of the entire sample (black) and for each country.

Comparing adjusted and unadjusted results

- crosses represent the mean of BMI (x-axis) and outcome (y-axis) of the entire sample (black) and for each country.
- Because the mean BMI is not the same in the two countries and because BMI is associated to the level of vitamin D , the adjusted and non-adjusted results are different.
unadjusted difference between countries is -0.17 , adjusted is -0.13

Model checking (default) plots

- Residual plot: always "important".
- QQplot: mostly for small samples and when computing prediction intervals.
- Similar importance, for similar reasons, as in univariate linear regression (Lecture 3) and ANOVA model (Lecture 4).
\({ }^{32 / 68}\)

\section*{Wally residual plot}

Theoretical Ouantiles

Theredical Ouantiles
eoretical Ouantiles
Theoretical Ouantiles
Theoretical Ouantiles

\section*{Wally QQplot}

\section*{ANCOVA with more than two categories}
- Research question: is there a difference in mean log-vitamin D between Danish, Finnish, Irish and Polish elderly women having the same BMI?
- Predictor variable(s):
- BMI as a quantitative (continuous) variable
- Country Denmark / Finland / Ireland / Poland
- Data example: all elderly women, \(n=213(53+54+41+65)\).
- Linear model: \(\quad Y_{i}=\alpha+\beta_{1} x_{i}+\beta_{2} z_{i}+\beta_{3} v_{i}+\beta_{4} w_{i}+\varepsilon_{i}\)
\[
\begin{aligned}
& x_{i}=\text { BMI of subject } i
\end{aligned} \quad z_{i}=\left\{\begin{array}{ll}
1 & \text { if } i \text { is Finnish } \\
0 & \text { otherwise }
\end{array}\right\} \begin{aligned}
& v_{i}=\left\{\begin{array}{ll}
1 & \text { if } i \text { is Irish } \\
0 & \text { otherwise }
\end{array} \quad w_{i}= \begin{cases}1 & \text { if } i \text { is Polish } \\
0 & \text { otherwise }\end{cases} \right.
\end{aligned}
\]
- \(\beta_{2}\) : difference in mean outcome between Finnish and Danish among women having the same BMI (whatever it is).
- \(\beta_{3} \& \beta_{4}\) : same but between Irish and Danish \& Polish and Danish.
- \(\beta_{2}\) : difference in mean outcome between Finnish and Danish among women having the same BMI (whatever it is).
- \(\beta_{3} \& \beta_{4}\) : same but between Irish and Danish \& Polish and Danish.

As in the simpler ANOVA context, we can test the global null hypothesis
" \(H_{0}\) : there is no difference in mean log-vitamin level between women of the four countries, when comparing women of the same \(\mathrm{BMI}^{\prime \prime}\),
that is
\[
H_{0}: \beta_{2}=\beta_{3}=\beta_{4}=0
\]

Similarly as in the (simpler) ANOVA context, we can use either:
- F-test
- min-P method

Pros and cons are similar to those in the ANOVA context (Lecture 4)

36/68

\section*{Visualizing the raw data \& results}

\section*{R code:}
```

anova(lm(log10(vitd) ~ bmi5, data = dwomen),
lm(log10(vitd) ~ bmi5 + Country, data = dwomen))

```

\section*{Output:}

Analysis of Variance Table

Model 1: log10(vitd) ~ bmi5
Model 2: log10(vitd) ~ bmi5 + Country
Res.Df RSS Df Sum of \(\mathrm{Sq} \quad \mathrm{F} \quad \operatorname{Pr}(>F)\)
121110.1690
\(\begin{array}{llllllll}2 & 208 & 9.2635 & 3 & 0.9055 & 6.7773 & 0.0002212 & \text { *** }\end{array}\)

\section*{Comments:}
- F-test p-value \(=0.0002212\) is significant: there is a difference between countries, for the average outcome, when comparing women of the same BMI. But which differences?
- To avoid coding mistakes and misunderstings of R output do compare the two models: do not use "anova(lm4)".

\section*{Digression: How to adjust?}

There is usually no unique "best" way to choose the variables to adjust on, but several interesting options, all with pros and cons. But, the choice should be supported by:
- Research question
- Which groups do we want to compare? In which population? Among subjects similar with respect to what?
- Background knowledge
- Why these groups? Why these population and comparisons among these "similar" subjects?
- Available data (variables \& sample size)
- What is the best compromise between what we ideally want to do and what we can do?

\section*{Recommended analysis (see R-demo for code)}

Statistical methods
Comparisons between countries were made with a multiple linear model to adjust on BMI (ANCOVA). P-values and 95\% confidence intervals were adjusted for multiple testing using the min-P method (aka max-t test) as implemented in the multcomp-package [ref. \({ }^{5}\)] of the statistical software \(R\left[r e f .{ }^{6}\right.\)] and described in [ref. \({ }^{7}\)].
Results (adjusted for multiple testing):
\begin{tabular}{lrrr}
\hline Comparison & Est. Diff & \(95 \% \mathrm{Cl}\) & p -value \\
\hline Finland - Denmark & 0.05 & {\([-0.06 ; 0.15]\)} & 0.6695 \\
Ireland - Denmark & 0.03 & {\([-0.09 ; 0.14]\)} & 0.9282 \\
Poland - Denmark & -0.11 & {\([-0.22 ;-0.01]\)} & 0.0239 \\
Ireland - Finland & -0.02 & {\([-0.13 ; 0.09]\)} & 0.9695 \\
Poland - Finland & -0.16 & {\([-0.26 ;-0.06]\)} & 0.0003 \\
Poland - Ireland & -0.14 & {\([-0.25 ;-0.03]\)} & 0.0069 \\
\hline
\end{tabular}

Note:
- Significant association between countries and log vitamin D after adjusting on BMI, \(p\)-value \(=0.0003\) (minimum of the adjusted p-values). And we also know where the differences are!
- Similarly, we can use the method for the "many-to-one" setting (as in Lecture 4).
- This method works with any linear model, not just an ANCOVA (and so does the F-test)
\({ }_{6}^{5}\) Hothorn, Bretz \& Westfall (2008). Simultaneous Inference in General Parametric Models. Biometrical Journal 50(3), 346-363.
\({ }_{R}\) Core Team (2024). R: A language and environment for statistical computing. R Foundation for Statistical Computing, ia. URL https://www.R-project.org/
Bretz, Hothom, \& Westfall (2016). Muttiple comparisons using R. CRC Press

\footnotetext{
Interaction and subgroup analysis
}

ILO: to interpret models with interaction and exemplify their usefulness

\section*{Outline}

The multiple linear model

> ILO: to outline what the multiple linear model is about IIO: to list important methods that are special cases of the model IIO.

Why multiple regression?
ILO: to exemplify when a multiple regression can be better than a univariate analysis
ILO: to describe the connection with ANOVA

ANCOVA and model checking
ILO: to use the ANCOVA and interpret the results

Digression: Table-I and the statistical analysis plan (SAP)
ILO: to repeat widely recommended practices in statistics

ILO: to interpret models with interaction and exemplify their use
ILO: to contrast the use of these models and subgroup analyses
\({ }_{41}^{41 / 6 e}\)

Note: several models may be needed when there are several research questions. \({ }^{8}\)

\section*{Digression: Table 1}
- Using a simple descriptive "Table 1" to informally compare the distribution of all variables (except the outcome) between the groups we want to compare often helps to choose how we should adjust.
- It is often useful to adjust on age, gender, baseline comorbidities etc or any variable which is not equally distributed between the groups \({ }^{9}\).
- This is fine and not "cheating" (i.e. not "data snooping" or "p-hacking") as long we do not look at any association between the outcome and any variable before we make the choice on how to adjust. Of course, full pre-specification is even better, if possible \({ }^{10}\)
- The aim of this descriptive "Table 1" is often to only describe the population of each group. In that case, it is widely recommended that it does not include p -values. \({ }^{11}\)
\({ }^{9}\) and which is not a consequence of the treatments or exposures being studied
\({ }^{10}\) e.g. for clinical trials, often we can and we should fully prespecify.
\({ }^{43 / 6911}\) e.g. for clinical trials, often we can and we should fully prespecify.

Digression: (quotes: p-values usually not welcome in "Table 1"; RCT data)
"Hardly a statistician of repute can be found to defend the practice common among physicians of comparing the treatment groups in a randomized clinical trial at baseline using hypothesis/significance tests on covariates. The reason for the statistician's dislike is that such a test appears to be used to say something about the adequacy of the given allocation whereas it could only be a test of the allocation procedure: the randomization process itself."
"In short, the test of baseline balance is a misuse of the significance test. The fact that it is frequently performed does not constitute a defence any more than the fact that antibiotics are commonly employed to 'treat' viral infections proves that they are effective antivirals. And the fact that baseline tests are commonly performed without much apparent harm is no more of a defence than saying of the policy of treating colds with antibiotics that most patients recover."

Reference: quotes from Section 7.2.1, pages 112-113, in Statistical Issues in Drug Development (3 \({ }^{\text {rd }}\) Edition), by Stephen Senn.

Digression: (quotes: p-values usually not welcome in "Table 1"; RCT data)

During the analyses of a trial, summaries of baseline information are generally provided by randomized intervention. Examples include demographics and baseline disease severity. Only descriptive statistics is used in these summaries. Inferential comparisons of randomized treatment arms with respect to baseline variables are generally not appropriate as any imbalance between treatment arms is completely random (i.e., \(5 \%\) of comparisons would have between-arm comparison p-values of \(<0.05\), and thus are meaningless). This is not to say that baseline differences between randomized interventions do not exist or are not important. However, comparisons should be based on clinical importance rather than statistical significance.

Inferential measures such as standard errors and confidence intervals should not be used to describe the variability of characteristics, and significance tests should be avoided in descriptive tables. Also, \(P\) values are not an appropriate criterion for selecting which confounders to adjust for in analysis; even small differences in a confounder that has a strong effect on the outcome can be important \((144,145)\).

Vandenbroucke, Jan P., et al. "Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): explanation and elaboration." Annals of internal medicine 147.8 (2007): W-163.

Digression: (quotes: p-values should be avoided in "Table 1 "; observational data)

Digression: efficient "Table 1" making in R ("Pulabrer p pactese)

\section*{R code:}

Notes: remember, a "common task" is rarely time-consuming to \(R\) users. Packages and specific functions are continuously created to help with common needs. Spend a few minutes to search appropriate packages!
\({ }_{47} / 68\)

\section*{Digression: statistical analysis plan (SAP)}
- It is strongly recommended to make a statistical analysis plan (SAP) before starting any analysis on the outcome data. This is a must for confirmatory research (e.g. randomized clinical trials).
- It consists of a list of research questions and corresponding analyses, ideally with a few comments to explain their rationale.

\section*{It helps to:}
- better discuss with your collaborators and supervisors.
- anticipate challenges (and prevent many stressful stuations..)
- rigorously prespecify your analyses and therefore increase the trust that you and your readers can have in your results.
- "In fact, a lot of questionable research practices can be avoided with a study protocol and statistical analysis plan."12

It is completely fine to make revisions to the statistical plan and perform post hoc analyses as long as conclusions based on these additional analyses are suitably calibrated.
\({ }^{48 / 69} 12\) Schwab et al. "Ten simple rules for good research practice."PLoS Computational Biology" 18.6 (2022): e1010139

Digression (quote about SAP/protocol)

\subsection*{1.2.7 Study protocol}

Randomized experiment: Before beginning the actual experiment, a written protocol describes the design, exclusion criteria, primary and secondary outcomes, and proposed analyses.
Better observational study: Before examining outcomes that will form the basis for the study's conclusions, a written protocol describes the design, exclusion criteria, primary and secondary outcomes, and proposed analyses; see Chapter 19.

Poorer observational study: If sufficiently many analyses are performed, something publishable will turn up sooner or later.

Paul Rosenbaum, Design of Observational Studies (2009, \(2^{\text {nd }}\) Edition, page 7).

Digression (quote : writting a SAP does not preclude posthoc analyses !)
"A [statistical analysis] plan does not preclude unplanned analyses. A plan distinguishes planned and unplanned analyses."

Paul Rosenbaum, Design of Observational Studies (2009, \(2^{\text {nd }}\) Edition, page 328).

Again, it is completely fine to make revisions to the SAP and perform post hoc analyses as long as conclusions based on these additional analyses are suitably calibrated.

\section*{Prediction interval vs confidence intervals}

- Confidence interval (of the estimated mean value): it quantifies the uncertainty in the estimation of the population mean. It tells us where we are "confident" that the population mean is (plain lines).
- Prediction interval: it tells us the range of values that include most (\(95 \%\)) of the observations in the entire population (dashed lines). Its width essentially depends on the estimated standard error of the "error term" \(\sigma_{\varepsilon}\). It relies strongly on the normal distribu assumption of the "error term

\section*{Prediction interval vs confidence intervals}
- Confidence interval (of the estimated mean value): it quantifies the uncertainty in the estimation of the population mean. It tells us where we are "confident" that the population mean is (plain lines).
- Prediction interval: it tells us the range of values that include most (\(95 \%\)) of the observations in the entire population (dashed lines). Its width essentially depends on the estimated standard error of the "error term" \(\sigma_{\varepsilon}\). It relies strongly on the normal distributi assumption of the "error term

\section*{Outline}

The multiple linear model
ILO: to outline what the multiple linear model is about
IIO: to list important methods that are special cases of the model

Why multiple regression?
ILO: to exemplify when a multiple regression can be better than a univariate
ILO: to describe the connection with ANOVA
ANCOVA and model checking
ILO: to use the ANCOVA and interpret the results

Digression: Table-I and the statistical analysis plan (SAP)

Interaction and subgroup analysis
ILO: to interpret models with interaction and exemplify their usefulness ILO: to contrast the use of these models and subgroup analyses

\section*{Case: a (first) model with an interaction}
- Research questions:
- Is BMI associated with log-vitamin D in both Irish and Polish elderly women?
- Is there a different association between log-vitamin D and BMI in Irish and Polish elderly women?
- Predictor variable(s):
- BMI as a quantitative (continuous) variable
- Country Ireland / Poland
- Data example: Irish and Poland women, \(n=106(41+65)\).
- Linear model: \(\quad Y_{i}=\alpha+\beta_{1} x_{i}+\beta_{2} z_{i}+\beta_{3} x_{i} \cdot z_{i}+\varepsilon_{i}\)
\[
x_{i}=\left\{\begin{array}{ll}
1 & \text { if } i \\
\text { is Polish } \\
0 & \text { if } i
\end{array} \quad z_{i}=\text { is Irish } \quad . \quad z_{i} \text { of subject } i .\right.
\]

\section*{R code \& default output}

\section*{R code:}
\(\operatorname{lm} 5<-\operatorname{lm}(\log 10(v i t d) \sim\) Country * bmi5, data \(=\) irlpolwomen) summary(irlpolwomen)

\section*{Output:}

Coefficients:
\begin{tabular}{lrrrrr}
(Intercept) & 2.26626 & 0.19630 & 11.545 & \(<2 e-16\) & \(* * *\) \\
CountryPoland & -0.50113 & 0.25719 & -1.948 & 0.05410 &. \\
bmi5 & -0.11834 & 0.03681 & -3.215 & 0.00175 & \(* *\) \\
CountryPoland:bmi5 & 0.06768 & 0.04650 & 1.455 & 0.14865
\end{tabular}

Conclusions?

- Blue slope (Ireland) \(\hat{\beta}_{2}=-0.11834 / 5 \approx-0.12 / 5\)
- Red slope (Poland) \(\hat{\beta}_{2}+\hat{\beta}_{3}=(-0.11834+0.06768) / 5 \approx-0.05 / 5\)
-
Difference in slope (Poland - Ireland) \(\hat{\beta}_{3}=0.06768 / 5 \approx 0.07 / 5\)

Trick: re-parametrization for a nicer interpretation of all estimates

We refit the same model after substracting 27 to the BMI variable.

\section*{R code:}
irlpolwomen\$bmi5b <- (irlpolwomen\$bmi-27)/5 \(\operatorname{lm} 5 \mathrm{~b}<-\operatorname{lm}(\log 10(v i t d) \sim\) Country \(*\) bmi5b, data \(=\) irlpolwomen)
summary (lm5b)

\section*{Output:}

Coefficients:
\begin{tabular}{lrrrrr}
& \multicolumn{5}{l}{ Estimate } \\
Std. Error & t value \(\operatorname{Pr}(>|t|)\) \\
(Intercept) & 1.62722 & 0.03021 & 53.862 & \(<2 \mathrm{e}-16{ }^{* * *}\) \\
CountryPoland & -0.13567 & 0.03995 & -3.396 & \(0.000975{ }^{* * *}\) \\
bmi5b & -0.11834 & 0.03681 & -3.215 & \(0.001749{ }^{* *}\) \\
CountryPoland:bmi5b & 0.06768 & 0.04650 & 1.455 & 0.148649
\end{tabular}
\[
\begin{array}{lrlrl}
\text { CountryPoland:bmi5b } & 0.06768 & 0.04650 & 1.455 & 0.148649
\end{array}
\]
- (Intercept) 1.62722: estimated mean log vitamin D for an elderly Irish woman having a BMI of 27 (i.e. the "reference" woman here). This is an estimated mean
- CountryPoland -0.13567: we estimate that, in average, the log vitamin D of a Polish elderly woman having a BMI of 27 is 0.13567 lower than that of an Irish elderly woman also having a BMI of 27. This is an estimated difference in means
- bmi5b -0.11834: we estimate that, in average, the log vitamin D of any elderly Irish woman is 0.11834 lower than that of another elderly Irish woman having a 5 -unit lower BMI. This is an estimated difference in means.
- CountryPoland:bmi5b 0.06768: we estimate that, in average, the difference in \(\log\) vitamin D between two elderly Irish women, one having a 5-unit lower BMI than the other, is 0.06768 larger than the same difference among Polish elderly women. This is an estimated difference in differences in means.
We further estimate that, in average, the log vitamin D of any elderly Polish woman is \(0.11834-0.06768 \approx 0.05\) lower than that of an elderly Polish woman having a 5 -unit lower BMI.

Note: be careful when writing conclusion sentences: are you comparing " A to B " or " B to A " the sentence? Is it the same in the output of the software?

\section*{Trick: changing the reference level (for the slope in the other group)}

\section*{R code:}
irlpolwomen\$Country2 <- relevel(irlpolwomen\$Country,ref="Poland") lm5c <- lm(log10(vitd) ~ Country2 * bmi5b, data = irlpolwomen) FormatResLm(lm5c)

\section*{Output:}
\begin{tabular}{lrrrr}
& Est & \(2.5 \%\) & 97.5 \% & p-value \\
(Intercept) & 1.49 & 1.44 & 1.54 & \(<2 e-16\) \\
Country2Ireland & 0.14 & 0.06 & 0.21 & 0.000975 \\
bmi5b & -0.05 & -0.11 & 0.01 & 0.077570 \\
Country2Ireland: bmi5b & -0.07 & -0.16 & 0.02 & 0.148649
\end{tabular}

Note: the effect of BMI on log-vitamin D is not significant among Polish elderly women (\(p\)-value \(=0.078\)). This could not be read from previous \(R\) output, although this is interesting for our research question!

\section*{Parameters interpretation}

According to the model, the means of log-vitamin \(D\) are:
\begin{tabular}{|l|l|l|}
\hline BMI & Country & Ireland \\
Poland \\
\hline "Normal" & \(\alpha\) & \(\alpha+\beta_{1}\) \\
\hline "Overweight" & \(\alpha+\beta_{2}\) & \(\alpha+\beta_{1}+\beta_{2}+\beta_{3}\) \\
\hline
\end{tabular}
- \(\alpha\) : mean outcome for Irish with "normal" BMI (reference group).
- \(\beta_{1}\) : difference in mean outcome between Irish and Polish among women with "normal" BMI.
- \(\beta_{2}\) : difference in mean outcome between women with "overweight" and those having a "normal" BMI, among Irish women.
- \(\beta_{1}+\beta_{3}\) : difference in mean outcome between Irish and Polish among women with "overweight".
- \(\beta_{2}+\beta_{3}\) : difference in mean outcome between women with "overweight" and those having a "normal" BMI, among Polish women.
\(\beta_{3}\) : difference in differences in means....

\section*{R code:}
lm6 <- lm(log10(vitd) ~ Country * bmigroup, data = irlpolwomen) summary (lm6)

\section*{Output:}

Coefficients:
\begin{tabular}{lrrrr}
& Estimate & Std. Error t value \(\operatorname{Pr}(>|\mathrm{t}|)\) \\
(Intercept) & 1.71987 & 0.04840 & 35.538 & \(<2 \mathrm{e}-16 \quad * * *\) \\
CountryPoland & -0.12142 & 0.07393 & -1.643 & 0.1036 \\
bmigroup1 & -0.12682 & 0.06198 & -2.046 & 0.0433
\end{tabular}\(*\)

\footnotetext{
Conclusions? Does this output answer our research question?
}
- Research question: is there a difference in average log-vitamin \(D\)
between Irish and Polish elderly women having the same BMI group?
- Predictor variable(s):

B BMI "normal" (18.5-25) / "overweight" (>25).
- Country Ireland / Poland
- Data example: Irish and Poland women, \(n=106(41+65)\).
- Linear model: \(\quad Y_{i}=\alpha+\beta_{1} x_{i}+\beta_{2} z_{i}+\beta_{3} x_{i} \cdot z_{i}+\varepsilon_{i}\)
\[
x_{i}=\left\{\begin{array}{ll}
1 & \text { if } i \text { is Polish } \\
0 & \text { if } i \text { is Irish }
\end{array} \quad z_{i}=\left\{\begin{array}{lll}
1 & \text { if } i \text { is "overweight" } \\
0 & \text { if } i \text { has a "normal" weight }
\end{array}\right.\right.
\]

This is a two-way ANOVA model with interaction.

\section*{Two-way ANOVA with interaction}

\section*{R code:}
 summary (lm6)

\section*{Output:}

Coefficients:
\begin{tabular}{lrrll}
(Intercept) & 1.71987 & 0.04840 & 35.538 & \(<2 \mathrm{e}-16 \quad * * *\) \\
CountryPoland & -0.12142 & 0.07393 & -1.643 & 0.1036 \\
bmigroup1 & -0.12682 & 0.06198 & -2.046 & 0.0433
\end{tabular}\(*\)

Conclusions? Does this output answer our research question?
In part yes, but not fully. We see both the estimated difference and the p-value
for the difference between the countries, for women with "normal" BMI only.
We do not see these results (no p-value) for those with "high" BMI. \({ }^{13}\)

We re-fit the model after changing the reference group for the BMI group variable.

\section*{R code}
irlpolwomen\$bmigroup2 <- relevel(irlpolwomen\$bmigroup,ref="1") \(\operatorname{lm} 6 \mathrm{~b}\) <- lm(log10(vitd) ~ Country * bmigroup2, data = irlpolwomen) summary (lm6b)

\section*{Output:}

Coefficients:
(Intercept)
CountryPoland
. 03872
41.147
< 2e-16 ***
bmigroup20
\(-0.14981\)
0.04697
-3. 190
0.00189 **
CountryPoland:bmigroup20
0.12682
\(0.061982 .0460 .04330 *\)
\(0.08758 \quad 0.324 \quad 0.74656\)
\({ }_{61} /{ }^{13}{ }^{13}\) Of course, we would like to also see the \(95 \%\)-Cls, for complete reporting of the results. This will able us to distinguish be
Conclusions?
\({ }^{62 / 68}\)

\section*{\(95 \%-\mathrm{Cl}\) and conclusion sentences \\ R code:}
round (confint(lm6b),2)

\section*{Output:}
\begin{tabular}{lrr}
& \(2.5 \%\) & \(97.5 \%\) \\
(Intercept) & 1.52 & 1.67 \\
CountryPoland & -0.24 & -0.06 \\
bmigroup20 & 0.00 & 0.25 \\
CountryPoland :bmigroup20 & -0.15 & 0.20
\end{tabular}
- We estimate that, on average, Polish "overweight" women have a value of \(\log _{10}\) vitamin D concentrations 0.15 lower than lrish "overweight" women (\(95 \%-\mathrm{Cl}=[0.06,0.24], \mathrm{p}=0.002\)).
- We did not find evidence that that, on average, Polish "normal weight" women have a value of \(\log _{10}\) vitamin D concentrations different to that of Irish "normal weight" women (Mean Difference \(=-0.12,95 \%-\mathrm{Cl}=[-0.27,0.03], \mathrm{p}=0.104\)). \({ }^{14}\)
- Note: we computed two p-values, thus adjusting for multiple testing might be needed. \({ }^{15}\)

\footnotetext{
14 One needs to run round (confint \((1 \mathrm{~m} 6), 2)\) to read the confidence interval for this "normal weight" BMI group.
}
\({ }_{63}{ }^{168}\) e.g. typically needed in the context of confirmatory research, if this is the main analysis. Typically not needed when this is

- Here the estimated means are equal to the sample means. We say that the model for the mean is saturated (because we have 4 parameters to estimate 4 means).
- We note the smaller sample size for "normal weight" women. We can hypothesize that the non-significant result in that group is du
wise to lack of power.

\section*{Interaction versus subgroup analysis}
- In the two previous examples, the only difference in the model assumptions between using a model with an interaction and performing a subgroup analysis (one per country) is the way we model the standard deviation of the error term \(\sigma_{\varepsilon}\) : we would model two different values with the subgroup analysis, whereas only one with the interaction model.
- If we had adjusted on more variables, then the difference would be more important, because the subgroup analysis would implicitly also model interactions with all these other variables.

\section*{Case: stratifying vs adjusting with interaction}

Comparing estimated parameters:
\begin{tabular}{|r|rr|r|}
\cline { 2 - 5 } \multicolumn{1}{c|}{} & \multicolumn{3}{c|}{ Statistical analysis choice } \\
\cline { 2 - 5 } \multicolumn{1}{c|}{} & \multicolumn{2}{|c|}{ Adjust + inter } & \multicolumn{2}{c|}{ Subgroup } \\
Poland & Ireland & Poland & Ireland \\
\hline Sun: sometimes vs avoid & -0.126 & -0.050 & -0.103 \\
\hline 0.0047 \\
Sun: prefer vs avoid & 0.020 & 0.020 & -0.068 \\
\hline 0.054 & 0.054 & -0.117 & 0.159 \\
\hline
\end{tabular}

From the three models:
1. \(\operatorname{lm}(\log 10(v i t d) \sim\) Country \(*\) bmi5b + sunexp, data \(=\) irlpolwomen \()\)
2. \(\operatorname{lm}(\log 10(v i t d) \sim\) bmi5b + sunexp, data \(=\) poland \()\)
3. \(\operatorname{lm}(\log 10(v i t d) \sim\) bmi5b + sunexp, data \(=\) ireland \()\)

Note: in model 1 (adjust + interaction), we assume that the "effect" of sun exposure is similar in Poland and Ireland, which is not the case with? the subgroup analysis.

\section*{Final words on modeling}

Many topics discussed today and on day 6 are important beyond the linear and logistic model.

Most of the reasoning about modeling choices, including:
- which variables to include?
- how? (with or without interaction, categorized version or not...)
- why does it matter?

This applies for more complicated model that you may encounter/need during your research career.

\section*{When, why, where to seek statistical help?}

When? if you are not sure about how to..
- plan your experiment or clinical trial
- analyze your data
- answer reviewers or collaborators concerns
(this might be more complicated than it appears)

\section*{Why?}
- you might get quick help and simple advice that make a big difference.
- to minimize the risk of "wasting" your precious research time and work by inappropriately analysis of your data.
- why not? it can sometimes be free of charge :-)

\section*{Where?}
- Section of Biostatistics
(https://publichealth.ku.dk/about-the-department/biostat/statistical-advisory-services/)
- by phone (quick \& simple questions): free of charge
\(>\) short meeting (20 mins): free of charge
- new collaborations: sometimes free, but usually not
\(\downarrow\) private companies also exist.```

[^0]: > α : mean for "normal" weight
 $>\alpha+\beta$: mean for "overweight"
 > β : difference in mean between "overweight" and "normal"

