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Outline
Overview

ILO: to outline what the (univariate) logistic model is about

One binary covariate
ILO: to interpret the model fit when using only one binary covariate

One categorical (non binary) covariate
ILO: to interpret the model fit when using only categorical binary covariate
ILO: to use the model to perform a powerful multiple testing adjustment

One continuous covariate
ILO: to interpret and check the model, when using only one continuous
covariate

Multiple regression: two binary covariates
ILO: to interpret the fit of a multiple regression (i.e. an adjsuted model)

Multiple regression: one continuous and one binary covariate
ILO: to interpret the fit of a multiple regression (i.e. an adjsuted model)

Multiple regression: interaction
ILO: to interpret interactions and explain their meaning to others
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Regression

Different types of outcome can be analyzed by different models:

Quantitative (continuous) outcome
I Linear regresssion.

I To model means.
I Association parameters: differences between mean values

0-1 (binary) outcome
I Logistic regression.

I To model probabilities.
I Association parameters: odds ratio (OR) or equivalently differences

between log(odds).
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Case: Framingham study1

Data, n=1,363:

AGE FRW SBP DBP CHOL CIG sex disease
1 45 93 100 62 220 0 Female 0
2 48 93 108 70 340 0 Male 0
3 45 91 160 100 171 0 Female 0
4 50 110 110 70 224 0 Male 0
5 48 85 110 70 229 25 Male 0
6 55 101 134 84 224 0 Male 0

Outcome: coronary heart disease (CHD) during follow-up (1=yes/no=0).

1Mahmood et al. "The Framingham Heart Study and the epidemiology of cardiovascular disease: a historical perspective." The
lancet 383.9921 (2014): 999-1008.

Andersson, Charlotte, et al. "70-year legacy of the Framingham Heart Study." Nature Reviews Cardiology 16.11 (2019): 687-698.
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I sex: Male/Female
I AGE: age (years) at baseline (45-62)
I FRW: "Framingham relative weight" (pct.) at baseline (52-222; 11

persons have missing values)
I SBP: systolic blood pressure at baseline (mmHg) (90-300)
I DBP: diastolic blood pressure at baseline (mmHg) 50-160)
I CHOL: cholesterol at baseline (mg/100ml) (96-430)
I CIG: cigarettes per day at baseline (0-60; 1 person has missing

value)
I disease: 1 if coronary heart disease (CHD) during follow-up, 0

otherwise
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Categorical explanatory variable (K groups, k = 1, . . . , K)

Linear regression, continuous outcome Y

mean(Y |group k)−mean(Y |reference group)

E.g., the average blood pressure was higher in males compared to
females.

Logistic regression, binary outcome

OR = odds(group k)
odds(reference group)

E.g., the risk (or the odds 2) of coronary heart disease was higher in
males compared to females.

2remember: odds(p)= p/(1 − p) and “higher odds” is equivalent to “higher risk”.
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Reminder: odds vs risk

The odds (in favor) of an event (here 1/2=0.5) is the ratio of the probability
that the event will happen (p, here 1/3=0.33) to the probability that the
event will not happen (q = 1 − p, here 2/3=0.67).

Figure from https://en.wikipedia.org/wiki/Odds.
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Software parametrization

By default, software report log(Odds ratio)= difference in log(odds).

log (OR) = log
{

odds(group k)
odds(reference group)

}

= log
{
odds(group k)

}
− log

{
odds(reference group)

}

But it does not matter for the interpretation.
I OR > 1⇔ log (OR) > 0⇔ RR > 1 (higher risk)
I OR = 1⇔ log (OR) = 0⇔ RR = 1 (same risk)
I OR < 1⇔ log (OR) < 0⇔ RR < 1 (lower risk)
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Quantitative (continuous) predictor variables
Linear regression, continuous outcome Y
Differences in mean values per unit of X:

mean(Y |x+1)−mean(Y |x)

E.g., the average systolic blood pressure increased with age.

Logistic regression, binary outcome
Ratio of odds per unit of X

Odds ratio = odds(x+1)
odds(x)

Differences in log(odds) per unit of X

log(OR) = log
{
odds(x+ 1)

}
− log

{
odds(x)

}

E.g., the risk (odds) of coronary heart disease increased with age.

9 / 68

u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f b i o s t a t i s t i c s

Quantitative (continuous) predictor variables
Linear regression, continuous outcome Y
Differences in mean values per unit of X:

mean(Y |x+1)−mean(Y |x)

E.g., the average systolic blood pressure increased with age.

Logistic regression, binary outcome
Ratio of odds per unit of X

Odds ratio = odds(x+1)
odds(x)

Differences in log(odds) per unit of X

log(OR) = log
{
odds(x+ 1)

}
− log

{
odds(x)

}

E.g., the risk (odds) of coronary heart disease increased with age.
9 / 68

u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f b i o s t a t i s t i c s

Linearity in regression models

For a continuous variable X (e.g. age), linearity means that the effect of
a unit change of X on the outcome does not depend on the value of X.

I Linear regression, continuous outcome Y

mean(Y |45+1)−mean(Y |45) = mean(Y |46+1)−mean(Y |46)
= · · · = mean(Y |61 + +1)−mean(Y |61)

I Logistic regression, binary outcome

odds(45+1)
odds(45) = odds(46+1)

odds(46) = · · · = odds(61+1)
odds(61)

Linearity is a model assumption which should be checked!3

3Categorizing a continuous covariate can be useful when linearity does not hold.
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Binary outcome regression: why not linear?
If the outcome variable is binary:

Yi =
{

1 if i is diseased
0 if i is not diseased

then linear regression
Yi = α+ βXi + εi

is not good for many reasons.

One reason is that the
regression line can go below
0 and above 1. ●● ●● ●● ● ●●●● ●● ●●● ● ●
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(Univariate) logistic regression
We model the probability of the event Yi = 1 for a subject with predictor
variable Xi.

P(Yi = 1|Xi = xi) = pi.

Instead of using a linear regression for pi, which is bounded between 0
and 1, we apply linear regression to log(odds):

log
(

pi

1− pi

)
= a+ bxi

I It’s a good idea as log
(

pi

1−pi

)
can be both negative and positive.

I We will see that exp(b) can be interpreted as an odds ratio.
I The function p 7→ log{p/(1− p)} is called the “logit” function and

we often write logit(pi) = a+ bxi .
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Appendix: further details

Equivalently, the (univariate)
logistic model is:

pi = exp( a+ bxi )
1 + exp( a+ bxi )

I a+ bxi: linear predictor

linear predictor = logit(risk)
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Appendix: further details

Example of model fit, with x
being the diastolic blood
pressure (mmHg):

pi = exp( −3.86 + 0.027xi )
1 + exp( −3.86 + 0.027xi )

Here the linear predictor ranges
from
−3.86 + 0.027 · 50 = −3.52 to
−3.86 + 0.027 · 144 = −0.13
because the pressure ranges
from 50 to 144.
(box on the plot to the right)

linear predictor = logit(risk)

R
is

k
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Research question:4

Do men and women have the same risk of coronary heart disease?

4A bit made up, just for pedagogical purpose, to illustrate the concepts.
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A binary explanatory variable

Yi =
{

1 subject i develops coronary heart diseased (CHD)
0 subject i does not develop CHD

Zi =
{

1 subject i is a man
0 if subject i a woman

Univariate logistic regression for pi = P(Yi = 1|Zi = zi):

log
(

pi

1− pi

)
= a+ bzi =

{
a females

a+ b males

That means,

b = (a+ b)− a = log(odds for ♂)− log(odds for ♀)

= log
(
odds for ♂
odds for ♀

)
= log

(
OR♂vs♀

)

and −b = · · · = log
(
OR♀vs♂

)
.

Note: remember that exp(−b) = 1/ exp(b).
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Logistic regression in R

fit1 <- glm(disease~sex, data=framingham, family=binomial)

I disease ∼ sex: tells R that disease is the outcome and sex the
predictor variable.

I data=framingham: tells R where to find the variable Y and Sex.
I glm: means “generalized linear model”.
I family=binomial: tells R that the outcome is binary and the that

logit link function should be used.
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R code: only sex variable

R code:
fit1 <- glm(disease~sex, data=framingham, family=binomial)
summary(fit1)

Output (partial):

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.07183 0.09047 -11.847 < 2e-16 ***
sexFemale -0.70702 0.13937 -5.073 3.92e-07 ***

Note: pay attention to the default reference group ! Here it is “male”, not “female” for sex, the
opposite of what we had at the previous slide...
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Comparison with results from the 2x2 table
TabSex <- table(relevel(framingham$sex,ref="Female"),

factor(framingham$disease,levels=c(1,0)))
table2x2(TabSex,stat=c("table","or"))

2x2 contingency table
_____________________________

1 0 Sum
Female 104 616 720
Male 164 479 643
-- -- -- --
Sum 268 1095 1363

Odds ratio = OR = (p1/(1-p1))/(p2/(1-p2)) = 0.4931
Standard error = SE.OR = sqrt((1/a+1/b+1/c+1/d)) = 0.1394

And we can see the same results:
I ÔR = exp(−0.7070219) = 0.493
I Standard error of log(OR)= 0.1394.

For this simple case with only one binary predictor variable, logistic regression is
equivalent to what we have seen last week.
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Confidence intervals for the odds ratio

library(Publish)
publish(fit1)

Variable Units OddsRatio CI.95 p-value
Sex Male 1.00 [1.00;1.00] 1

Female 0.49 [0.38;0.65] <0.0001

Note: 0.49 = exp(−0.71).

“Typical”/possible conclusion sentence:
Women have a significantly lower risk to develop coronary heart disease than
men (odds ratio: 0.49, 95%-CI: [0.38; 0.65], p-value <0.0001).

21 / 68

u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f b i o s t a t i s t i c s

Confidence intervals for the odds ratio

library(Publish)
publish(fit1)

Variable Units OddsRatio CI.95 p-value
Sex Male 1.00 [1.00;1.00] 1

Female 0.49 [0.38;0.65] <0.0001

Note: 0.49 = exp(−0.71).

“Typical”/possible conclusion sentence:
Women have a significantly lower risk to develop coronary heart disease than
men (odds ratio: 0.49, 95%-CI: [0.38; 0.65], p-value <0.0001).

21 / 68

u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f b i o s t a t i s t i c s

Changing the reference level

framingham$sexF <- relevel(framingham$sex,ref="Female")
fit1a <- glm(disease~sexF, data=framingham, family=binomial)
publish(fit1a)

Variable Units OddsRatio CI.95 p-value
sexF Female 1.00 [1.00;1.00] 1

Male 2.03 [1.54;2.66] <0.0001

Note: 2.03 = exp(0.71).

“Typical”/possible conclusion sentence:
Men have a significantly higher risk to develop coronary heart disease than
women (odds ratio: 2.03, 95%-CI: [1.5; 2.7], p-value <0.0001).
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Outline
Overview

ILO: to outline what the (univariate) logistic model is about

One binary covariate
ILO: to interpret the model fit when using only one binary covariate

One categorical (non binary) covariate
ILO: to interpret the model fit when using only categorical binary covariate
ILO: to use the model to perform a powerful multiple testing adjustment

One continuous covariate
ILO: to interpret and check the model, when using only one continuous
covariate

Multiple regression: two binary covariates
ILO: to interpret the fit of a multiple regression (i.e. an adjsuted model)

Multiple regression: one continuous and one binary covariate
ILO: to interpret the fit of a multiple regression (i.e. an adjsuted model)

Multiple regression: interaction
ILO: to interpret interactions and explain their meaning to others
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Research questions:5

Is age associated with the risk of coronary heart disease?

Are some age groups more at risk of coronary heart disease than others?

5A bit made up, just for pedagogical purpose, to illustrate the concepts.
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Model with only one categorical explanatory variable
Assume that we want to compare several groups, e.g. four age groups.6

Age
45-48 49-52 53-56 57-62

Outcome Y = 1 51 61 64 92 268
(CHD) Y = 0 308 298 254 235 1095

359 359 318 327 1363

We can either use:
I Fisher’s exact test or Pearson χ2 for the global null hypothesis

H0: “the risk is the same for all age groups” (see Lecture 5).
I or logistic regression to make all-pairwise comparisons (via OR) and

use the “modern” min-P approach to efficiently account for multiple
testing. If at least one adjusted p-value is significant (i.e., if min-P
≤ 5%), then we can reject H0 and conclude to an association. 7

6Note: we pooled the data of men and women.
7Rk: it also works when we “adjust” for other variables.
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Logistic regression: categorical variable with 4 levels:

log
(

pi

1− pi

)
=





a age 45− 48
a+ b1 age 49− 52
a+ b2 age 53− 56
a+ b3 age 57− 62

Reference category 45-48

a = log (odds(45− 48))

b1 = log
(
odds(49− 52)
odds(45− 48)

)

b2 = log
(
odds(53− 56)
odds(45− 48)

)

b3 = log
(
odds(57− 62)
odds(45− 48)

)

I Equivalent to making 3 times the 2x2 table analysis for the group 45-48
versus each of the three others .26 / 68
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Results: one categorical predictor variable
framingham$AgeCut <- cut(framingham$AGE,

c(40,48,52,56,99),
labels=c("45-48","49-52","53-56","57-62"))

fit3 <- glm(disease~AgeCut, data=framingham, family=binomial)
publish(fit3)

Variable Units OddsRatio CI.95 p-value
AgeCut 45-48 Ref

49-52 1.24 [0.82;1.85] 0.30425
53-56 1.52 [1.02;2.28] 0.04151
57-62 2.36 [1.61;3.46] < 0.0001

Remarks:
I Not all (six) comparisons are directly available from the “summary” of the model

fit, for example the odds ratio for group 57-62 vs 53-56 is not.
I ÔR = (92× 308)/(51× 235) = 2.36 and all estimates match those of each

corresponding 2 x 2 table.
I Running a similar code after changing the reference group is a convenient

"trick" to obtain any OR estimate, with corresponding 95% CI and p-value.
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Equivalent Results

framingham$AgeCutb <- relevel(framingham$AgeCut,"53-56")
fit3b <- glm(disease~AgeCutb, data=framingham, family=

binomial)
publish(fit3b)

Variable Units OddsRatio CI.95 p-value
AgeCutb 53-56 Ref

45-48 0.66 [0.44;0.98] 0.04151
49-52 0.81 [0.55;1.20] 0.29468
57-62 1.55 [1.08;2.24] 0.01798

As expected:
I 0.66=1/1.52, i.e. OR(45-48 vs 53-56)=1/OR(53-56 vs 45-48)
I 1.55=2.36/1.52, i.e. OR(57-62 vs 53-56)= OR(57-62 vs 45-48)/OR(53-56 vs

45-48)
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All pairwise comparisons: min-P approach
Statistical methods:
Comparisons between groups were made using a logistic model. P-values and 95%
confidence intervals were adjusted for multiple testing using the min-P (aka max-t
test) method as implemented in the multcomp-package [ref.8] of the statistical
software R [ref.9] and described in [ref.10].
Results (adjusted for multiple testing):

Comparison Est. OR 95% CI p-value
49-52 - 45-48 1.24 [0.7;2.1] 0.7329
53-56 - 45-48 1.52 [0.9;2.6] 0.1736
57-62 - 45-48 2.36 [1.4;3.9] 0.0001
53-56 - 49-52 1.23 [0.7;2.0] 0.7207
57-62 - 49-52 1.91 [1.2;3.1] 0.0028
57-62 - 53-56 1.55 [1.0;2.5] 0.0836

Note:
I Significant association between CHD and age groups, p-value= 0.0001 (the minimum of the

adjusted p-values)
I Similarly, we can use the method for the “many-to-one” setting (as in Lecture 4).

8Hothorn, Bretz & Westfall (2008). Simultaneous Inference in General Parametric Models. Biometrical Journal 50(3), 346–363.
9R Core Team (2024). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna,

Austria. URL https://www.R-project.org/.
10Bretz, Hothorn, & Westfall (2016). Multiple comparisons using R. CRC Press.
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Outline
Overview

ILO: to outline what the (univariate) logistic model is about

One binary covariate
ILO: to interpret the model fit when using only one binary covariate

One categorical (non binary) covariate
ILO: to interpret the model fit when using only categorical binary covariate
ILO: to use the model to perform a powerful multiple testing adjustment

One continuous covariate
ILO: to interpret and check the model, when using only one continuous
covariate

Multiple regression: two binary covariates
ILO: to interpret the fit of a multiple regression (i.e. an adjsuted model)

Multiple regression: one continuous and one binary covariate
ILO: to interpret the fit of a multiple regression (i.e. an adjsuted model)

Multiple regression: interaction
ILO: to interpret interactions and explain their meaning to others
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Research questions:11

Is age associated with the risk of coronary heart disease?

How does age relate to the risk of coronary heart disease?

11A bit made up, just for pedagogical purpose, to illustrate the concepts.
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Quantitative explanatory factor
It is sometimes more natural or better to include the a continuous variable
(e.g. age) as a quantitative predictor in the model (i.e., No grouping)12

log
(

pi

1− pi

)
= a+ b · agei

a = log(odds(age=0))

b = log
{
odds(age=x+ 1)

}
− log

{
odds(age=x)

}

Interpretation: we compare two subjects, one is one year older than the
other (no matter their ages, e.g. 46 vs 45 or 56 vs 55); we estimate that
the odds for CHD is

exp(b) = odds ratio

larger for the older subject than for the younger subject.
12sometimes better but not always, due to the linearity assumption or similar.
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Appendix: details on inference (Est., 95% CI & p-values)

I We estimate the parameters by giving them values that makes the
observations of the outcome of our data the “most likely” to be observed
(again). This is called ‘maximum likelihood estimation’. No simple
formula, except in very specific cases.

I We compute the standard error for each the parameter by looking at how
much the likelihood to observe the outcome of our data is sensitive to the
parameter values. Intuition: high sensitivity= a small range of parameter
values makes the data “most likely”= small standard error. No simple
formula, except in very specific cases.

I 95 % confidence interval for parameters:

estimate ± 1.96 · standard error.
I p-value for the null hypothesis H0: "parameter=0":

z = estimate
standard error and p-value = P (|Z| > |z|) ,

with Z being a random variable with a standard normal distribution. It
works well, but software can also do something slightly more precise
(called “profile likelihood” inference).
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Raw results

fit5 <- glm(disease~AGE,data=framingham,family=binomial)
summary(fit5)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -4.88431 0.77372 -6.313 0.000000000274 ***
AGE 0.06581 0.01446 4.550 0.000005374208 ***

I ÔR = exp(0.06581) = 1.07
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Good reporting practice
1-year change in age (not very good)

fit5 <- glm(disease~AGE,data=framingham,family=binomial)
publish(fit5)

Variable Units OddsRatio CI.95 p-value
AGE 1.07 [1.04;1.10] < 0.0001

10-year change in age (probably better)
framingham$age10 <- framingham$AGE/10
fit5b <- glm(disease~age10,data=framingham,family=binomial)
publish(fit5b)

Variable Units OddsRatio CI.95 p-value
age10 1.93 [1.45;2.56] < 0.0001

These results are completely equivalent: 1.93 = 1.0710. The fitted models are
the same, but the "default" way of presenting the results is different.
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Visualizing and checking the linearity assumption
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I We compare the “flexible” model which uses the categorized variable
to the “less flexible” model (but “nicer” if correct!) which uses the
continuous variable (together with a “linearity” assumption).
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Outline
Overview

ILO: to outline what the (univariate) logistic model is about

One binary covariate
ILO: to interpret the model fit when using only one binary covariate

One categorical (non binary) covariate
ILO: to interpret the model fit when using only categorical binary covariate
ILO: to use the model to perform a powerful multiple testing adjustment

One continuous covariate
ILO: to interpret and check the model, when using only one continuous
covariate

Multiple regression: two binary covariates
ILO: to interpret the fit of a multiple regression (i.e. an adjsuted model)

Multiple regression: one continuous and one binary covariate
ILO: to interpret the fit of a multiple regression (i.e. an adjsuted model)

Multiple regression: interaction
ILO: to interpret interactions and explain their meaning to others
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Multiple logistic regression
Additive effects of several explanatory variables:

log
(

pi

1− pi

)
= a+ b1zi + b2xi + . . .

with pi = P(Yi = 1|Xi = xi, Zi = zi, . . . ).

I Multiple logistic regression is a way to control for confounding /
unbalanced design.

I Makes it possible to estimate odds ratios to compare the risks of two
groups of subjects who are similar with respect to all predictor
variables except one.

I We often say that the effect (via the odds ratio) on the outcome of
each predictor variable under study (e.g. “exposure”), is adjusted for
the other explanatory variables (e.g. age, sex, comorbidity).

I Without interaction, the model assumes that the effect (odds ratio)
of z on Y is the same for all values of x.
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Research question:13

Are smokers more at risk of coronary heart disease than non-smokers?

Background (that we need to take into account):
It is known that men smoke more than women.

Hence the aim of the statistical analysis:
We want to compare the risk of two subjects, one smokes, the other
doesn’t, who are similar with respect to sex (i.e. either both men or both
women).

13A bit made up, just for pedagogical purpose, to illustrate the concepts.
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Example of two binary variables

Zi =
{

1 if male
0 female and Vi =

{
1 if smokes
0 otherwise

Data can be summarized as two 2 by 2 tables in two ways, but usually,
one option is more interesting than the other for the research question.

Males (Z=1) Females (Z=0)
Y = 1 Y = 0 Y = 1 Y = 0

Smoker: V = 1 107 288 V = 1 27 192
Non Smoker: V = 0 57 191 V = 0 77 423

Here it is less interesting to look at the two 2 by 2 tables showing the association between Y (disease) and Z (Sex) given V (Smoking),
because it is less related to our research question.
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Model with two binary variables (without interaction)

log
(

pi

1−pi

)
= a+ b1Zi + b2Vi

=





a Female non-smoker
a+ b1 Male non-smoker
a+ b2 Female smoker
a+ b1 + b2 Male smoker

Note: b1 = (a+ b1)− a (comparison among non-smoker)

= (a+ b1 + b2)− (a+ b2) (comparison among smoker)

= logOR(♂ vs ♀ for given smoking status )

and b2 = (a+ b2)− a (comparison among female)

= (a+ b1 + b2)− (a+ b1) (comparison among male)

= logOR (smokers vs. non-smokers for given sex)

Note: this is similar to the ANOVA model (lecture 4).
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Logistic regression results

fit2 <-glm(disease~sex+Smoke,data=framingham,family=binomial)
summary(fit2)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.09215 0.12717 -8.588 < 2e-16 ***
sexFemale -0.69521 0.14635 -4.750 2.03e-06 ***
SmokeYes 0.03296 0.14457 0.228 0.82
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Extracting odds ratios with confidence intervals

publish(fit2)

Variable Units OddsRatio CI.95 p-value
sex Male Ref

Female 0.50 [0.37;0.66] <1e-04
Smoke No Ref

Yes 1.03 [0.78;1.37] 0.8196

“Typical”/possible conclusion sentence:
Logistic regression adjusted for sex did not show an increase in odds of
CHD in smokers compared to non-smokers (OR=1.03, 95% CI:
[0.78;1.37], p=0.82).
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Visual interpretation
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Note: additivity is on the logit scale (i.e. log(odds) ), not on the risk scale.
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Outline
Overview

ILO: to outline what the (univariate) logistic model is about

One binary covariate
ILO: to interpret the model fit when using only one binary covariate

One categorical (non binary) covariate
ILO: to interpret the model fit when using only categorical binary covariate
ILO: to use the model to perform a powerful multiple testing adjustment

One continuous covariate
ILO: to interpret and check the model, when using only one continuous
covariate

Multiple regression: two binary covariates
ILO: to interpret the fit of a multiple regression (i.e. an adjsuted model)

Multiple regression: one continuous and one binary covariate
ILO: to interpret the fit of a multiple regression (i.e. an adjsuted model)

Multiple regression: interaction
ILO: to interpret interactions and explain their meaning to others
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Research question:14

Do men and women have the same risk of coronary heart disease?

Background:
It is known that aging increases the risks of coronary heart disease. We
could not collect the data in a way that necessarily makes the distribution
of age similar for men and women.

Hence the aim of statistical analysis:
We want to compare the risk of two subjects, one is a man, the other a
woman, both are similar with respect to age.

14A bit made up, just for pedagogical purpose, to illustrate the concepts.
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Another multiple regression example

Additive model (no statistical interactions)

log
( pi

1− pi︸ ︷︷ ︸
=oddsi

)
= a+ b1zi + b2xi

Effect of sex zi (0 = female, 1 = male) adjusted for age (xi)

odds(age=50, male)
odds(age=50, female) = exp(a+ b1 + b250)

exp(a+ b250)
= exp(a+ b1 + b250− a− b250)
= exp(b1).

The result is the same for age 46 and age 61 and all other ages.
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Effect of age (xi) for males:

odds(age=51, male)
odds(age=50, male) = exp(a+ b1 + b251)

exp(a+ b1 + b250)
= exp(a+ b1 + b251− a− b1 − b250)
= exp(b2).

The result is the same for females:

odds(age=51, female)
odds(age=50, female) = exp(a+ b251)

exp(a+ b250)
= exp(a+ b251− a− b250)
= exp(b2).

Linearity means that the result is the same for a comparison of age 63
and age 62 and all other one year differences.
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Results (raw)

fit6 <- glm(disease ~ AGE + sex, family = binomial,
data = framingham)

summary(fit6)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -4.59208 0.78019 -5.886 3.96e-09 ***
AGE 0.06672 0.01458 4.575 4.75e-06 ***
sexFemale -0.71613 0.14052 -5.096 3.46e-07 ***
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Results (formatted for publication)

fit6 <- glm(disease ~ AGE + sex, family = binomial, data =
framingham)

publish(fit6)

Variable Units OddsRatio CI.95 p-value
AGE 1.07 [1.04;1.10] <1e-04
sex Male Ref

Female 0.49 [0.37;0.64] <1e-04

Possible conclusion sentences:
Logistic regression was used to investigate gender differences in odds
(risks) of CHD adjusted for age.
The age adjusted odds ratio was 0.49 (95%-CI: [0.37;0.64]) showing that
the risks of CHD were significantly lower for women compared to men
(p<0.0001).
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Predicted risks based on logistic regression model
A logistic regression model can be used to predict
“personalized”/conditional risks, since

log
(

pi

1− pi

)
= a+ b1zi + b2zi + . . .

is equivalent to

pi = exp(a+ b1zi + b2xi + . . . )
1 + exp(a+ b1zi + b2xi + . . . )

We can predict a risk for any value of the covariates Z, X,... once we
have estimated the model parameters. We just need to plug the
estimated parameter values into the equations. 15

Note: the risks (and risk ratios) depend on all predictor variables
simultaneously.

15However, upmost caution is needed when using covariate values beyond the range of those
observed (e.g. age=110). Usually we do not want to extrapolate beyond the observed data. Same
remark as in Lecture 3.
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Visualization of predicted risks

I For men:
exp(−4.59208 + 0.06672 · age)

1 + exp(−4.59208 + 0.06672 · age)

I For women:
exp(−4.59208− 0.71613 + 0.06672 · age)

1 + exp(−4.59208− 0.71613 + 0.06672 · age)

Because we have seen:

Estimate
(Intercept) -4.59208
AGE 0.06672
SexFemale -0.71613
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Note: ÔR(male vs female given age) = e−0.71613 = 0.489 but R̂R varies from 0.535 to
0.610. Remember lecture 5, the large the risks and the more different RR from OR.
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Outline
Overview

ILO: to outline what the (univariate) logistic model is about

One binary covariate
ILO: to interpret the model fit when using only one binary covariate

One categorical (non binary) covariate
ILO: to interpret the model fit when using only categorical binary covariate
ILO: to use the model to perform a powerful multiple testing adjustment

One continuous covariate
ILO: to interpret and check the model, when using only one continuous
covariate

Multiple regression: two binary covariates
ILO: to interpret the fit of a multiple regression (i.e. an adjsuted model)

Multiple regression: one continuous and one binary covariate
ILO: to interpret the fit of a multiple regression (i.e. an adjsuted model)

Multiple regression: interaction
ILO: to interpret interactions and explain their meaning to others
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Statistical interaction = Effect
modification

The effect of X on Y depends on Z

Example: the effect of age (X) on coronary heart disease (Y ) depends on the sex (Z).
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Effect modification

Setting: 3 variables.
I two predictor variables X and Z
I one outcome Y

Meaning
In logistic regression, an interaction means that the odds ratio which
describes the effect of X on the odds of Y = 1 depends on the value
of Z.

Symmetry
If the effect of variable X on Y is modified by Z then also the effect of
Z on Y is modified X.
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Research question:16

What are the risk of coronary heart disease for men and women
at any age?

How different is the consequence of aging on the risk of coronary heart
disease between men and women?

16A bit made up, just for pedagogical purpose, to illustrate the concepts.
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Interaction between a continuous and a binary variable

To model the interaction we add “b3xi · zi” in the model, i.e.,

log
( pi

1− pi︸ ︷︷ ︸
=oddsi

)
= a+ b1zi + b2xi + b3xi · zi

I The effect of sex zi (0 = female, 1 = male) depends on age (xi).

odds(age=50, male)
odds(age=50, female) = exp(a+ b1 + b250 + b350)

exp(a+ b250) = exp(b1 + b350).

When
{
b3 > 0
b3 < 0

}
, then OR(♂ vs ♀ given age)

{
increases
decreases

}
with age.
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I The effect of age (xi) depends on sex zi.

odds(age=50, male)
odds(age=45, male) = exp(a+ b1 + b250 + b350)

exp(a+ b1 + b245 + b345)
= exp(b25 + b35).

odds(age=50, female)
odds(age=45, female) = exp(b25).

Note: exp(b2) describes the odds ratio for age in the reference group for
sex (female) only, while it is exp(b2 + b3) in the other group (male).
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Statistical interaction in R

First option (more transparent):
glm(disease ~ AGE + sex + AGE:sex, family = binomial,

data = framingham)

Shorter syntax (less transparent):
glm(disease ~ AGE * sex, family = binomial,

data = framingham)
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Raw R output

fit7 <- glm(disease ~ AGE + sex + AGE:sex, family = binomial,
data = framingham)

summary(fit7)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.45290 1.00008 -3.453 0.000555 ***
AGE 0.04523 0.01883 2.402 0.016288 *
sexFemale -3.54459 1.60431 -2.209 0.027146 *
AGE:sexFemale 0.05297 0.02987 1.773 0.076194 .

Note: pay attention to the default reference group ! Here it is “male”, not “female”
for sex, the opposite of what we had at the previous slide...
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Interpretation: some details

I (Intercept): est. log of the odds in the reference group (male,
AGE=0). Not meaningful here!

I (AGE): est. log of the OR, when comparing the risks of two males (the
reference group for sex), one being 1 year older than the other. The value
is 0.04523. Because it is positive, it means that OR>1 and thus that
aging increases the risk of disease.

I (sexFemale): est. log of the OR, when comparing the risk of a female to
that of a male, the two being AGE=0. Not meaningful here!

I (AGE:sexFemale): est. log of the ratio of two ORs. The first OR
(numerator) is the OR to compare the the risks of two males (the
reference group for sex), one being 1 year older than the other. The
second is the OR to compare the the risks of two females one being 1 year
older than the other. The value is 0.05297. Because it is positive, it
means that the ratio is > 1 and thus that aging is "worse" for females
than males. I mean, the association between age and the risk of disease is
stronger in females than in males.

61 / 68

u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f b i o s t a t i s t i c s

Formatted results

fit7 <- glm(disease ~ AGE + sex + AGE:sex, family = binomial,
data = framingham)

publish(fit7)

Variable Units OddsRatio CI.95 p-value
AGE: sex(Male) 1.05 [1.01;1.09] 0.01629

AGE: sex(Female) 1.10 [1.05;1.15] < 1e-04

Interpretation
I One year more in age increases the odds by 5% (95% CI=[1;9]) in

males and by 10% (95% CI=[5;15]) in females.17.
I However, note that the difference in the increase in odds between

men and women is not significant (p-value=0.076).

171.05 = exp(0.04523) and 1.10 = exp(0.04523 + 0.05297)
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Predicted risk with or without interaction
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Note: without an interaction (top), the curves cannot cross. With (bottom), they can.63 / 68
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When using models with interaction?

I When it makes sense in the context of your study18.
I Because of the research question.
I To better “adjust”.
I When subgroup analyses could be interesting.

I To check that the corresponding model without interaction seems
“reasonable”, i.e. to challenge your modeling assumptions.

18But you should have enough data... the more flexible the model the more data
you need to estimate it accurately.
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Two binary variables revisited: with interaction

fit8 <-glm(disease~sex*Smoke,data=framingham,family=binomial)
summary(fit8)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.2092 0.1509 -8.012 1.13e-15 ***
sexFemale -0.4943 0.1953 -2.532 0.0114 *
SmokeYes 0.2191 0.1887 1.161 0.2456
sexFemale:SmokeYes -0.4772 0.3053 -1.563 0.1180

publish(fit8)

Variable Units OddsRatio CI.95 p-value
sex(Male): Smoke(Yes vs No) 1.24 [0.86;1.80] 0.24555

sex(Female): Smoke(Yes vs No) 0.77 [0.48;1.24] 0.28219
Smoke(No): sex(Female vs Male) 0.61 [0.42;0.89] 0.01135

Smoke(Yes): sex(Female vs Male) 0.38 [0.24;0.60] < 1e-04
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Reminder: results without interaction
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Reminder: results with interaction
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I Estimates are simply those obtained by stratifying, i.e. they match
those of the two 2x2 tables of slide 39, e.g. 27.1% =107/(107+288).67 / 68
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Take home messages
I (Multiple) logistic regression describes associations between one or

several explanatory variables and the risk of an event (binary
outcome), via odds ratio.

I The analysis of an exposure of interest can be adjusted for potential
confounders.

I In an additive model (no interactions), the odds ratio for each
explanatory variable does not depend on the other explanatory
variables.

I Risks and risk ratios predicted by the model depend on the other
explanatory variables.

I Linearity and absence of interaction are assumptions which might
need to be checked.

I Models with interactions are flexible and useful but need more
concentration to be interpreted correctly and more data to be fitted.

I Many models can be fitted from the same data, but some are more
relevant than others for a given research question (e.g. in terms of
adjustments and interactions).68 / 68


