Faculty of Health Sciences

Binary outcomes and frequency tables

Basic Statistics for health researchers

Alessandra Meddis

Section of Biostatistics, University of Copenhagen

May 1st, 2024

Outline/Intended Learning Outcomes (ILOs)

Preliminaries

ILO: calculate 95% CIs for population proportions

ILO: distinguish between exact and approximate (asymptotic) 95% Cls

Binary outcome

Binary outcome

$$Y = \begin{cases} 1 & \text{event / positive / disease} \\ 0 & \text{no event / negative / non-disease} \end{cases}$$

Parameters

▶ Prevalence: proportion of the population with event at fixed time point.

How many have the disease right now?

▶ Risk: probability that event occurs in given time period: How likely will a subject acquire the disease within 1-year?

Statistical inference

Estimating risks and prevalence

$$\widehat{p} = \text{Relative frequency} = \frac{\text{Number of events}}{\text{Number of subjects}} = \frac{x}{n}$$

Confidence limits: normal approximation ("large" n^1)

$$\left[\widehat{p} - 1.96\sqrt{\frac{\widehat{p}(1-\widehat{p})}{n}}; \widehat{p} + 1.96\sqrt{\frac{\widehat{p}(1-\widehat{p})}{n}}\right]$$

Confidence limits: "exact" (any n)

binom.test(x,n)

Exact confidence intervals

Example:

- ightharpoonup x = 7 (number of events)
- n = 43 (number of subjects) $\rightarrow \hat{p} = 7/43 = 16.3\%$

We want to be sure at 95% that the true value falls inside the confidence interval $[p_L;p_U]$

PARTMENT OF BIOSTATISTICS UNIVERSITY OF COPENHA

DEPARTMENT OF BIOSTATISTIC

Exact confidence intervals

Example:

- ightharpoonup x=7 (number of events)

We want to be sure at 95% that the true value falls inside the confidence interval $[p_L; p_U]$

Binomial Distribution:

$$\mathbf{P}(X=x) = \binom{n}{x} p^x (1-p)^{n-x}$$

$$\mathbf{P}(X \le x) = \sum_{i=0}^{x} \binom{n}{i} p^{i} (1-p)^{n-i}$$

Exact confidence intervals

Example:

- ightharpoonup x = 7 (number of events)
- n = 43 (number of subjects) $\rightarrow \hat{p} = 7/43 = 16.3\%$

We want to be sure at 95% that the true value falls inside the confidence interval $[p_L;p_U]$

Binomial Distribution:

$$\mathbf{P}(X \le 7) = \sum_{i=0}^{x} \binom{n}{i} p^{i} (1-p)^{n-i}$$

To obtain the exact confidence interval, we look for:

$$p_U$$
 s.t. $P(X \le 7) = 0.025$

$$p_L \text{ s.t.} \mathbf{P}(X \ge 7) = 0.025$$

Exact confidence intervals (computation/intuition)

$Exact\ confidence\ intervals\ ({\tt computation/intuition})$

ightharpoonup x = 7 and n = 43 leads to $\hat{p} = 16.3\%$ and 95% CI= [6.8; 30.7].

ightharpoonup x = 7 and n = 43 leads to $\hat{p} = 16.3\%$ and 95% CI= [6.8; 30.7].

Exact confidence intervals (computation/intuition)

ightharpoonup x = 7 and n = 43 leads to $\hat{p} = 16.3\%$ and 95% CI= [6.8; 30.7].

Exact confidence intervals (computation/intuition)

ightharpoonup x = 7 and n = 43 leads to $\hat{p} = 16.3\%$ and 95% CI= [6.8; 30.7].

Exact confidence intervals (computation/intuition)

 $\blacktriangleright~x=7~\mathrm{and}~n=43~\mathrm{leads}~\mathrm{to}~\hat{p}=16.3\%~\mathrm{and}~95\%~\mathrm{CI}=[6.8;30.7].$

Exact confidence intervals (computation/intuition)

ightharpoonup x=7 and n=43 leads to $\hat{p}=16.3\%$ and 95% CI= [6.8;30.7].

IVERSITY OF COPENHAGEN

EPARTMENT OF BIOSTATISTICS UNIVERSITY OF COPENHAGE

DEPARTMENT OF BIOSTATISTIC

Exact confidence intervals (computation/intuition)

ightharpoonup x = 7 and n = 43 leads to $\hat{p} = 16.3\%$ and 95% CI= [6.8; 30.7].

$Exact\ confidence\ intervals\ ({\tt computation/intuition})$

 $\blacktriangleright~x=7$ and n=43 leads to $\hat{p}=16.3\%$ and 95% CI= [6.8;30.7].

Normal approximation

▶ Binomial distribution: $P(X = x) = \binom{N}{x} p^x (1-p)^{N-x}$

x = 7 and n = 43 leads to $\hat{p} = 16.3\%$ and 95% CI= [5.2; 27.

Normal approximation

• "good"approximation if $np \geq 5$ and $n(1-p) \geq 5$ (green boxes)

 $^{\text{\tiny 65}}$ ▶ x = 7 and n = 43 leads to $\hat{p} = 16.3\%$ and 95% CI= [5.2; 27.3].

PARTMENT OF BIOSTATISTICS UNIVERSITY OF COPENHAG

Outline/Intended Learning Outcomes (ILOs)

Preliminaries

ILO: calculate 95% Cls for population proportions

II O: distinguish between exact and approximate (asymptotic) 95% Cls

Group comparison

ILO: to define a suitable association measure and compute its 95% CI

ILO: to (correctly) use the χ^2 test and Fisher's test

Sample size and power calculation

II O: to identify why and how to make power and sample size calculations

ILO: to analyse their strengths and limitations

Confounding

ILO: to exemplify confounding and its potential to be misleading

ILO: to name two commonly used remedies

Cohort vs case-control study

ILO: to differentiate the cohort and case-control designs

II O: to restate which association measure(s) can be used for each design

Screening: jargon

ILO: to recognize some jargon

Paired binary data (if time allows

LO: to exemplify paired binary data

ILO: to calculate appropriate 95%-CI and p-values

Pan |

Case: clinical trial on Dalteparin ³

Data: n=85 diabetic patients with peripheral arterial occlusive disease and chronic foot ulcers, randmomized (double-blind) to:

▶ Placebo (n = 42)

ightharpoonup Dalteparin (n=43)

Outcome:

Category ²	Label
intact skin	healed
decreased ulcer area $\geq 50\%$	improved
increased ulcer area $\geq 50\%$	impaired
decreased or increased ulcer area $< 50\%$	unchanged
amputation above/below ankle	amputation

Research question: Does Dalteparin improve the outcome, when injected once daily until ulcer healing or for a maximum of 6 months?

^{9/63} 3 Kalani et al. *Diabetes Care* **26**: 2575-2580, 2003

²mutually exclusive.

UNIVERSITY OF COPENHAGEN

DEPARTMENT OF BIOSTATISTICS UNIVERSITY OF COPENHAGEN

DEPARTMENT OF BIOSTATISTICS

Frequency table

	Dalteparin	Placebo
Healed	14 (33%)	9 (21%)
Improved	15 (35%)	11 (26%)
Unchanged	7 (16%)	9 (21%)
Impaired	5 (12%)	5 (12%)
Amputation	2 (5%)	8 (19%)
total (100%)	43	42

- ► Summarizes the outcome data.
- ► Prepare/Format data for analyzes.

Barplot (frequencies)

2

DEPARTMENT OF BIOSTATISTICS UNIVERSITY OF COPENHAG

DEPARTMENT OF BIOSTATISTI

Barplot (proportions⁴)

Here we pool the outcome categories as follows

Category	Dichotomized outcome
intact skin	better
ulcer area decreased $\geq 50\%$	Dettel
decreased or increased ulcer area $< 50\%$	
increased ulcer area $\geq 50\%$	worse
amputation above/below ankle	

Important: this dichotomization should be prespecified (i.e. decision made before seeing the data). ⁵

⁵For an illustration of why prespecification matters, see e.g. Austin & Goldwasser. "Pisces did not have increased heart failure: data-driven comparisons of binary proportions between levels of a categorical variable can result in incorrect statistical significance

Group comparison

Placebo group

Risk of worse outcome =
$$\frac{22}{42}=\widehat{p}_1$$

Dalteparin group

Risk of worse outcome
$$=\frac{14}{43}=\widehat{p}_2$$

Placebo group

Risk of worse outcome
$$=\frac{22}{42}=\widehat{p}_1$$

Dalteparin group

Risk of worse outcome
$$=\frac{14}{43}=\widehat{p}_2$$

Association measures⁶

Relative risk:
$$\frac{\widehat{p}_1}{\widehat{p}_2}$$
 Odds ratio: $\frac{\frac{\widehat{p}_1}{1-\widehat{p}_1}}{\frac{\widehat{p}_2}{1-\widehat{p}_2}}$ Risk difference: $\widehat{p}_1-\widehat{p}_2$

They are often better understood and easier to communicate!

⁶whenever possible, we prefer using risk ratios or risk differences to odds ratios. They are often better understood and easier to communicate!

2x2 contingency table

Response

Exi	oos	ure	

	yes	no	total
yes	а	b	a+b
no	С	d	c+d
total	a+c	b+d	N

Risk estimates

$$\widehat{p}_1 = \frac{a}{a+b} \qquad \widehat{p}_2 = \frac{c}{c+d}$$

Relative risk

$$\widehat{RR} = \frac{a/(a+b)}{c/(c+d)}$$

rtesponse			
	yes	no	total
yes	а	b	a+b
no	С	d	c+d
total	a+c	b+d	N

Standard error of $\log(\widehat{RR})$ and confidence interval of RR ⁷

$$\widehat{\sigma} = \sqrt{\frac{1}{a} - \frac{1}{a+b} + \frac{1}{c} - \frac{1}{c+d}}$$

$$\log(RR): CI_{95\%} = \left[\log(\widehat{RR}) - 1.96\,\widehat{\sigma}); \, \log(\widehat{RR}) + 1.96\,\widehat{\sigma})\right]$$

$$RR: CI_{95\%} = \left[\widehat{RR} \cdot \exp(-1.96\,\widehat{\sigma}) ; \widehat{RR} \cdot \exp(1.96\,\widehat{\sigma})\right]$$

⁶whenever possible, we prefer using risk ratios or risk differences to odds ratios.

^{15/63} ⁷This method is "good enough" with "large enough" sample sizes.

Relative risk: placebo versus dalteparin

 $\widehat{RR} = \frac{22/42}{14/43} = 1.609$ Treatment

	Outcome		
	worse	better	total
placebo	22	20	42
dalteparin	14	29	43
total	36	49	85

Standard error of $log(\widehat{RR})$ and confidence interval

$$\hat{\sigma} = \sqrt{\frac{1}{22} - \frac{1}{42} + \frac{1}{14} - \frac{1}{43}} = 0.264$$

$$CI_{95\%} = [0.959; 2.7]$$
 (does include 1)

The risk in the placebo group is 1.6 times higher then the risk in the dalteparin group and the risk among patients on placebo could be between 0.9 times lower and 2.7 higher compared with patients on dalteparin.

Relative risk: placebo versus dalteparin

 $\widehat{RR} = \frac{22/42}{14/43} = 1.609$

	Outcome		
	worse	better	total
placebo	22	20	42
dalteparin	14	29	43
total	36	49	85

$$1/1.609 = 0.625, \quad CI_{95\%} = [0.37; 1.04]$$

The risk in the dalteparin group is reduced by a factor 0.622 compared to the placebo group....

Risk difference

Response			
	yes	no	total
yes	а	b	a+b
no	С	d	c+d
total	a+c	b+d	N

 $\hat{\Delta} = \frac{22}{42} - \frac{14}{43} = 0.198$

Risk difference: placebo versus dalteparin

	worse	better	total	
placebo	22	20	42	
dalteparin	14	29	43	
total	36	49	85	

Outcome

Standard error of $\widehat{\Delta}$ and confidence interval ⁸

$$\widehat{\sigma} = \sqrt{ab/(a+b)^3 + cd/(c+d)^3}$$

$$CI_{95\%} = \left[\widehat{\Delta} - 1.96 \,\widehat{\sigma} \, ; \, \widehat{\Delta} - 1.96 \,\widehat{\sigma} \right]$$

Standard error of $\widehat{\Delta}$ and confidence interval

$$\widehat{\sigma} = \sqrt{22 \cdot 20/42^3 + 14 \cdot 29/43^3} = 0.105$$

$$CI_{95\%} = [-0.008 ; 0.404]$$
 (does include 0)

Risk difference: placebo versus dalteparin

		- 4	
$\widehat{\Lambda}$	22		0.100
$\Delta =$	${42}$ -	$\frac{-}{43} =$	0.198

Treatment

	Outcome		
	worse	better	total
placebo	22	20	42
dalteparin	14	29	43
total	36	49	85

Standard error of $\widehat{\Delta}$ and confidence interval

$$\hat{\sigma} = \sqrt{22 \cdot 20/42^3 + 14 \cdot 29/43^3} = 0.105$$

$$CI_{95\%} = [-0.008 \; ; \; 0.404]$$
 (does include 0)

The risk among patients on placebo is 19.8 % higher compared to risk in the deltaparin group, the risk in the placebo group could be between 0.8% lower and 40.4% higher compared with patients on dalteparin.

Odds Ratio (OR)

Odds: ratio of the probability of success by probability of failure

and the risk can be computed back from the odds, p = odds/(1 + odds). Odds are difficult to interpret, but if risks are small, then risks \approx odds.

The Odds ratio (OR) is defined as the ratio of the odds

$$OR = \frac{\text{odds}_1}{\text{odds}_2} = \frac{p_1/(1-p_1)}{p_2/(1-p_2)}$$

Concept **needed** for

- case-control studies (stay tuned!)
- ► logistic regression (next week)

$OR = \frac{\text{odds}_1}{\text{odds}_2} = \frac{p_1/(1-p_1)}{p_2/(1-p_2)}$

OR are difficult to interpret, but from the equation...

$$RR = \frac{OR}{\left\{1 - p_2\right\} + p_2 OR},$$

$$ightharpoonup OR > 1 \Leftrightarrow RR > 1$$

$$OR = 1 \Leftrightarrow RR = 1$$

$$OR < 1 \Leftrightarrow RR < 1$$

$$OR < 1 \Leftrightarrow RR < 1$$

...and further conclude that

- ▶ the OR is sufficient to deduce whether a risk increases or decreases.
- ▶ if p_2 is small (e.g. rare disease), then $OR \approx RR$.

When is $OR \approx RR$?

When is $OR \approx RR$?

When is $OR \approx RR$?

IVERSITY OF COPENHAGEN

EPARTMENT OF BIOSTATISTICS UNIVERSITY OF COPENHAGE

DEPARTMENT OF BIOSTATISTI

When is $OR \approx RR$?

Odds ratio

$$\widehat{OR} = \frac{\frac{a/(a+b)}{b/(a+b)}}{\frac{c/(c+d)}{d/(c+d)}} = \frac{a \cdot a}{b \cdot a}$$

Exposure

Response			
	yes	no	total
yes	а	b	a+b
no	С	d	c+d
total	a+c	b+d	N

Standard error of $\log(\widehat{OR})$ and confidence interval⁹

$$\widehat{\sigma} = \sqrt{\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}}$$

$$CI_{95\%} = \left[\widehat{OR} \cdot \exp(-1.96\,\widehat{\sigma}); \widehat{OR} \cdot \exp(1.96\,\widehat{\sigma})\right]$$

Odds ratio: placebo versus dalteparin

$$\widehat{OR} = \frac{22 \cdot 29}{14 \cdot 20} = 2.279$$

	Outcome			
	worse	better	total	
placebo	22	20	42	
dalteparin	14	29	43	
total	36	49	85	

Standard error of $log(\widehat{OR})$ and confidence interval

$$\widehat{\sigma} = \sqrt{\frac{1}{22} + \frac{1}{20} + \frac{1}{14} + \frac{1}{29}} = 0.449$$

$$CI_{95\%} = [0.946; 5.491]$$
 (does include 1)

The placebo group has 2.3 times higher odds of experiencing the worse outcome compared to the dalteparin group.

Reporting results

The relative risk (of worsening) of group 1 (Dalteparin) versus group 2 (Placebo) is estimated as

$$RR = \frac{14/43}{22/42} = 0.622$$

Equivalent statements:

- ▶ The risk in group 1 is reduced by a factor 0.622 compared to group 2.
- ► The risk in group 1 is 37.8% lower than in group 2.10
- ▶ The risk in group 2 is 1.609 times higher than in group 1.11
- ► The risk in group 2 is 60.9% higher than in group 1.

¹⁰because 1-0.622=0.378

Testing independence in a randomized clinical trial

Null hypothesis H_0 : the treatment has no effect.

Prob(worse given dalteparin) = Prob(worse given placebo)

$$\Leftrightarrow \qquad p_1 - p_2 = 0 \qquad \text{(Difference = 0)}$$

$$\Leftrightarrow \qquad \frac{p_1}{p_2} = 1 \qquad \text{(Relative risk = 1)}$$

$$\Leftrightarrow \qquad \frac{p_1/(1-p_1)}{p_2/(1-p_2)} = 1 \qquad \text{(Odds ratio = 1)}$$

Popular tests of independence between the treatment group and the outcome groups:

- \triangleright χ^2 test (normal approximation)¹²
- ► Fisher's exact test: recommended as the default choice! ¹³

The χ^2 test statistic

$$\chi^2 = \sum \frac{(\text{observed counts} - \text{expected counts})^2}{\text{expected counts}}$$

Observed counts

Expected counts

	Response			
		yes	no	total
Exposure	yes	а	b	a+b
Lxposure	no	С	d	c+d
	total	a+c	b+d	N

		Resp	oonse	
		yes	no	total
Exposure	yes	E ₁₁	E ₁₂	a+b
Lxposure	no	E ₂₁	E ₂₂	c+d
	total	a+c	b+d	N

- ► The expected counts are calculated under the null hypothesis of independence between exposure and response
- \blacktriangleright in a population of size n, for a given risk of event p, we expect to see (on average) np events in this population

¹²This method is "good enough" with "large enough" sample sizes.

^{26/63}13Recommended because: Why approximate when you can get the exact?

The χ^2 test statistic

$$\chi^2 = \sum \frac{(\text{observed counts} - \text{expected counts})^2}{\text{expected counts}}$$

Observed counts

Expected counts

	Response			
		yes	no	total
Exposure	yes	а	b	a+b
	no	С	d	c+d
	total	a+c	b+d	N

	Response			
		yes	no	total
Exposure	yes	E ₁₁	E ₁₂	a+b
Exposure	no	E ₂₁	E ₂₂	c+d
	total	a+c	b+d	N

- ► The expected counts are calculated under the null hypothesis of independence between exposure and response
- ightharpoonup in a population of size n, for a given risk of event p, we expect to see (on average) np events in this population

Example: Expected counts for *Exposed*=*yes*, *Response*=*yes* (\mathbf{E}_{11}):

The χ^2 test statistic

$$\chi^2 = \sum \frac{(\text{observed counts} - \text{expected counts})^2}{\text{expected counts}}$$

Observed counts

Expected counts

Exposure

Response				
	yes	no	total	
yes	а	b	a+b	
no	С	d	c+d	
total	a+c	b+d	N	

		Resp	Jonse	
		yes	no	total
Exposure	yes	E ₁₁	E ₁₂	a+b
-Aposure	no	E ₂₁	E ₂₂	c+d
	total	a+c	b+d	N

- ► The expected counts are calculated under the null hypothesis of independence between exposure and response
- ightharpoonup in a population of size n, for a given risk of event p, we expect to see (on average) np events in this population

Example: Expected counts for *Exposed=yes, Response=yes* (\mathbf{E}_{11}):

 $p = P(Exposed = yes, Response = yes) = P(Exposed = yes) \cdot P(Response = yes)$

27 / 63

VERSITY OF COPENHAGEN

EPARTMENT OF BIOSTATISTICS UNIVERSITY OF COPENHAGE

DEPARTMENT OF BIOSTATISTICS

The χ^2 test statistic

$$\chi^2 = \sum \frac{(\text{observed counts} - \text{expected counts})^2}{\text{expected counts}}$$

Observed counts

Expected counts

		yes	no	total
Exposure	yes	а	b	a+b
	no	С	d	c+d
	total	a+c	b+d	N

	Response			
		yes	no	total
xposure	yes	E ₁₁	E ₁₂	a+b
-xposure	no	E_{21}	E ₂₂	c+d
	total	a+c	b+d	N

- ► The expected counts are calculated under the null hypothesis of independence between exposure and response
- ightharpoonup in a population of size n, for a given risk of event p, we expect to see (on average) np events in this population

Example: Expected counts for Exposed = yes, Response = yes (E_{11}):

$$p = \mathbf{P}(Exposed = yes, Response = yes) = \mathbf{P}(Exposed = yes) \cdot \mathbf{P}(Response = yes)$$

$$p = \frac{a+b}{N} \cdot \frac{a+c}{N}$$

The χ^2 test statistic

$$\chi^2 = \sum \frac{(\text{observed counts} - \text{expected counts})^2}{\text{expected counts}}$$

Observed counts

Expected counts

		yes	no	total
Exposure	yes	а	b	a+b
zxposure	no	С	d	c+d
	total	a+c	b+d	N

		,		
		yes	no	total
Exposure	yes	E ₁₁	E ₁₂	a+b
	no	E ₂₁	E ₂₂	c+d
	total	a+c	b+d	N

- ► The expected counts are calculated under the null hypothesis of independence between exposure and response
- ightharpoonup in a population of size n, for a given risk of event p, we expect to see (on average) np events in this population

Example: Expected counts for Exposed = yes, Response = yes (\mathbf{E}_{11}):

 $p = \mathbf{P}(Exposed = yes, Response = yes) = \mathbf{P}(Exposed = yes) \cdot \mathbf{P}(Response = yes)$

$$p = \frac{a+b}{N} \cdot \frac{a+c}{N}$$

$$\to \mathbf{E}_{11} = N \cdot \frac{a+b}{N} \cdot \frac{a+c}{N} = \frac{(a+b) \cdot (a+c)}{N}$$

The χ^2 test statistic

$$\chi^2 = \sum \frac{(\text{observed counts} - \text{expected counts})^2}{\text{expected counts}}$$

Observed counts

		Response		
		yes	no	total
Exposure	yes	a	Ь	a+b
	no	С	d	c+d
	total	a+c	b+d	N

under the null hypothesis.

Expected counts

Exposure

response				
	yes	no	total	
yes	(a+b)(a+c)/N	(a+b)(b+d)/N	a+b	
no	(c+d)(a+c)/N	(c+d)(b+d)/N	c+d	
total	a+c	b+d	N	

Rule of thumb: a valid analysis requires that all expected counts are ≥ 5 .

Test

Test results

Null hypothesis:

dalteparin treatment has no effect for chronic foot ulcers.

Test	p-value
Fisher's exact test	0.0808
Pearson's χ^2 test	0.0644
Pearson's χ^2 test with Yates' continuity correction ¹⁴	0.1032

R code:

tab <- rbind(c(22,20),c(14,29))
fisher.test(tab) # always works (default choice!)
chisq.test(tab,correct=FALSE) # fine with large samples
chisq.test(tab,correct=TRUE) # no longer useful</pre>

 $^{-14}$ Expected to be more precise than the usual Pearson's χ^2 test when the sample size is ve small. **NOT RECOMMENDED**, with small sample sizes, use Fisher's test instead.

VERSITY OF COPENHAGE

PARTMENT OF BIOSTATISTICS UNIVERSITY OF COPENHAC

DEPARTMENT OF BIOSTATISTI

A note of caution

Because the (simple) formulas for the 95% CI (of the previous slides) are based on large sample size approximations, they are not necessarily consistent with the result of the Fisher's exact test, especially with "very small" sample sizes.

Example:

	event	no event
exposed	5	12
non-exposed	8	3

 $\hat{p}_1 = 8/11 = 0.73, \quad \hat{p}_2 = 5/17 = 0.29.$

 \triangle = 0.43 (0.09; 0.77)

 $ightharpoonup \widehat{RR} = 2.47 \ (1.09 \ ; 5.62)$

 $ightharpoonup \widehat{OR} = 6.40 \ (1.18 \ ; 34.61)$

• p-values from Fisher's exact test and Pearson's χ^2 (with and without Yates correction) are 0.051, 0.063 and 0.025, respectively.

Here the confidence intervals show a significant result, but not Fisher's test.

Fortunately, it is rare that we run into this problem.... and even rarer that it matters for the interpretation.

^{31/61}15see R package exact2x2 and references in the help documentation

Larger contigency tables (1/2)

If the table is not 2x2 but, e.g., 3x4 or 2x4, the χ^2 test and Fisher's exact test are testing an "ANOVA-like" null hypothesis similarly to what the F-test does to compare several means.

First example:

	underweight	normal	overweight	obese
no SCD	9	51	20	8
SCD	23	61	3	1

R code:

fisher.test(table(d\$SCD,d\$BMIgroup))

returns a p-value <0.001, for the null hypothesis

H₀: "the prevalence of SCD is the same in all groups of BMI"

that is, "no association between BMI group and SCD".

Larger contigency tables (2/2)

Second example:

	underweight	normal	overweight	obese
age=[16, 25)	14	45	1	1
[25, 30)	3	25	3	1
[30, 67]	15	42	19	7

R code:

fisher.test(table(d\$ageGroup,d\$BMIgroup))

returns p-value=0.004, for the null hypothesis

 H_0 : "the prevalence of each BMI group is the same in all groups of age "

that is, "no association between BMI group and age".

33 / 63

RSITY OF COPENHAGEN

PARTMENT OF BIOSTATISTICS UNIVERSITY OF COPENHAG

DEPARTMENT OF BIOSTATISTIC

Outline/Intended Learning Outcomes (ILOs)

Preliminaries

II O: calculate 05% Cls for nonulation proportions

LO: distinguish between exact and approximate (asymptotic) 95% CIs

Group comparisor

II O: to define a suitable association measure and compute its 95% C

ILO: to (correctly) use the v^2 test and Fisher's test

Sample size and power calculation

ILO: to identify why and how to make power and sample size calculations

ILO: to analyse their strengths and limitations

Confounding

ILO: to exemplify confounding and its potential to be misleading

ILO: to name two commonly used remedies

Cohort vs case-control study

ILO: to differentiate the cohort and case-control designs

II O: to restate which association measure(s) can be used for each design

Screening: jargor

ILO: to recognize some jargon

Paired binary data (if time allows)

LO: to exemplify paired binary data

ILO: to calculate appropriate 95%-CI and p-values

PAO :

Sample size and power calculation

Sample size and power calculation is mostly useful for designing clinical trials to determine the appropriate sample size needed to detect the expected effect size with sufficient statistical power.

However, this could be a useful tool in observational studies to understand what is possible to achieve with the available data.

 $z_{lpha/2}=-1.96$ for lpha=5% and $z_{eta}=0.84$ is 1.28 for 1-eta=80

Sample size and power calculation

Sample size and power calculation is mostly useful for designing clinical trials to determine the appropriate sample size needed to detect the expected effect size with sufficient statistical power.

However, this could be a useful tool in observational studies to understand what is possible to achieve with the available data.

Textbook formula ("large n" approximation)

$$n = \frac{\left\{z_{\alpha/2}\sqrt{2\bar{p}(1-\bar{p})} + z_{\beta}\sqrt{p_1(1-p_1) + p_2(1-p_2)}\right\}^2}{(p_1 - p_2)^2}$$

 \triangleright z_{γ} is the γ -quantile of a standard normal distribution ¹⁶

 $1.96 \text{ for } \alpha = 5\% \text{ and } z_B = 0.84 \text{ is } 1.28 \text{ for } 1$

- $\bar{p} = (p_1 + p_2)/2.$
- n: number of observations in each group.

When calculating the sample size we need to specify:

- ightharpoonup expected size effect
- ▶ the desired power (1β) and Type I error (α)

Reverse the formula to compute:

- Power for a given sample size: for expected values of p_1 and p_2 and desired n and α .
- ▶ Least detectable difference (or ratio): $\delta = p_1 p_2$ (or $r = p_1/p_2$) for given n, expected p_1 , desired α and minimal power $(1-\beta)$.

Sample size calculation

Subjects needed to detect significant risk difference with a power of 80%, if the risks in the two groups are 25% and 50%.

Standard software can be used, e.g. R:

Two-sample comparison of proportions power calculation

NOTE: n is number in *each* group

- ightharpoonup n = 58 subjects needed in **each** group (i.e. 116 in total) to detect significant risk difference with a power of 80% and $\alpha = 0.05$.
- lacktriangledown at fixed $p_2=0.5$, for larger p_1 , namely decreasing the risk difference, we can be a supported by the support of the observe a fast increase in the needed sample size.

Power calculation

Example: an initial calculation suggests n = 58 subjects per group (i.e. 116 in total), for detecting a difference of 25% survival between the two groups, assuming 50%survival in the placebo group (with 80% power). But what does the power become if we were too optimistic with the expected treatment effect? E.g. what if the difference in survival probability is only 15%?

power.prop.test(n=58, p1 = 0.35, p2 = 0.5)

Two-sample comparison of proportions power calculation

NOTE: n is number in *each* group

ightharpoonup power = 38% enrolling 116 individuals (58 foe each group) and 15% increase in the survival probability.

Least detectable difference

Example: My grant can finance a total sample size of n=150 (i.e. 75 per group). What is the smallest survival difference that I can hope to show with a decent power (e.g. 80%), if I expect 80% survival in the "standard of care" (i.e. control) group? And if I expect 85% in the "standard of care" group?

power.prop.test(n=75, p1 = 0.8, power=0.8)

Two-sample comparison of proportions power calculation

n = 75
p1 = 0.8
p2 = 0.950095
sig.level = 0.05
power = 0.8
alternative = two.sided

NOTE: n is number in *each* group

One power/sample size calculation is often not enough.

It is good to understand how the needed sample size and power are affected by varying p_1 and p_2

Discussions on

- ► Budget and resources allocations
- ► Ethical implications
- ▶ Is it worth continuing with the study knowing that we have small power?

Note: you need to supply a value for p1, not p2, otherwise the software is looking for a lower risk and it returns 0.72.

39 / 1

RSITY OF COPENHAGEN

DEPARTMENT OF BIOSTATISTICS UNIVERSITY OF COPENHAGI

DEPARTMENT OF BIOSTATISTICS

Outline/Intended Learning Outcomes (ILOs)

Preliminaries

ILO: calculate 95% Cls for population proportions

ILO: distinguish between exact and approximate (asymptotic) 95% CIs

Group comparisor

II O: to define a suitable association measure and compute its 95% CI

ILO: to (correctly) use the χ^2 test and Fisher's test

Sample size and power calculation

O: to identify why and how to make power and sample size calculations

ILO: to analyse their strengths and limitations

Confounding

ILO: to exemplify confounding and its potential to be misleading

ILO: to name two commonly used remedies

Cohort vs case-control study

ILO: to differentiate the cohort and case-control designs

II O: to restate which association measure(s) can be used for each design

Screening: jargor

ILO: to recognize some jargon

Paired binary data (if time allows)

O: to exemplify paired binary data

ILO: to calculate appropriate 95%-CI and p-values

Confounding

"A simple definition of confounding is the confusion of effects. This definition implies that the effect of the exposure is mixed with the effect of another variable, leading to a bias." ¹⁷

Failing to take a confounding variable into account can lead to a **false conclusion** that the outcome are in a **causal relationship** with the predictor variable.

Confounding variables are typically encountered in observational studies, but not in "ideal" randomized experiments.

42/63₁₇Rothman (2012), Epidemiology: an introduction

UNIVERSITY OF COPENHAGEN DEPARTMENT OF BIOSTATISTICS UNIVERSITY OF COPENHAGEN DEPARTMENT OF BIOSTATISTICS

Confounding example (birth order and risk of Down syndrome 18)

Confounding example (birth order and risk of Down syndrome 18)

^{43/6}18Stark and Mantel (1966), J. Natl. Cancer Inst. 37(5) 687–698

43/63<mark>18Stark and Mantel (1966), J. N</mark>atl. Cancer Inst. 37(5) 687–698

VERSITY OF COPENHAGEN DEPARTMENT OF BIOSTA

Confounding example (birth order and risk of Down syndrome 18)

When can association mean causation? (1/2)

We usually say that (statistical) association does not imply causation

- Association: when changes in one variable are observed alongside changes in another variable
- ► Causation: changes in one variable directly cause changes in another variable.

When can association mean causation? (1/2)

We usually say that (statistical) association does not imply causation

- Association: when changes in one variable are observed alongside changes in another variable
- Causation: changes in one variable directly cause changes in another variable.

Example:

Clear association between Being Danish and enjoying licorice-flavored treats. However, being Danish not cause an individual to like licorice, nor does liking licorice cause someone to be Danish.

EPARTMENT OF BIOSTATISTICS UNIVERSITY OF COPENHAGE

DEPARTMENT OF BIOSTATISTICS

When can association mean causation? (1/2)

We usually say that (statistical) association does not imply causation

- Association: when changes in one variable are observed alongside changes in another variable
- Causation: changes in one variable directly cause changes in another variable.

In presence of confounding we might not be able to identify the true causal effect.

We need (among others) that the groups we are comparing are similar with respect to everything except the treatment under study (exchangeability assumption).

When we succeed to correctly control for confounding, conditional exchangeability holds and association can be interpreted as causation.

When can association mean causation? (2/2)

An example where association implies causation is "ideal" randomized experiments.

The randomization ensures that the two groups that we compare are similar with respect to everything except the intervention / treatment under study. Hence, if a difference in outcome is observed between the two groups, then we can be confident that this is the consequence of this unique difference in exposure / treatment.

In non-randomized (or non "ideally" randomized) experiments the two compared groups will usually differ with respect to more than one characteristic. This generates multiple plausible explanations for the observation of the difference in outcome – some causal and some non causal.

45 / 63

46

Adjusted analysis

Suppose that in addition to the outcome and the exposure group a categorical confounder variable (e.g. gender) is measured for each individual.

► Subgroup analysis

Analyze 2x2 contingency tables separately in each strata defined by the confounder variable.

► Logistic regression (next week)

To compute a "weighted" average of the subgroup analyses, assuming that the exposure-outcome association is the same in all subgroups. ¹⁹.

47/63₁₉Applicable also with continuous confounders

NIVERSITY OF COPENHAGEN

DEPARTMENT OF BIOSTATIST

Observational study design

In a prospective **cohort study**, an outcome or disease-free study population is first identified by an exposure (e.g., onset of diabetes) or other inclusion criteria and followed in time until the disease or outcome of interest occurs.

Case-control studies identify subjects by outcome status at the outset of the investigation. First, subjects with outcome are identified and classified as **cases**. For each case a given number of controls (e.g., 4) are selected. A candidate **control** is a subject without the outcome but from the same source population.

Outline/Intended Learning Outcomes (ILOs)

Preliminaries

LO: calculate 95% Cls for population proportions

ILO: distinguish between exact and approximate (asymptotic) 95% Cls

Group comparison

LO: to define a suitable association measure and compute its 95% CI

ILO: to (correctly) use the v^2 test and Fisher's test

Sample size and power calculation

ILO: to identify why and how to make power and sample size calculations

ILO: to analyse their strengths and limitations

Confounding

ILO: to exemplify confounding and its potential to be misleading

ILO: to name two commonly used remedies

Cohort vs case-control study

ILO: to differentiate the cohort and case-control designs

ILO: to restate which association measure(s) can be used for each design

Screening: jargon

ILO: to recognize some jargon

Paired binary data (if time allows)

ILO: to exemplify paired binary dat

ILO: to calculate appropriate 95%-CI and p-value

Observational Study Designs: Case Control vs Cohort

source: wikipedia article about case-control studies

Cohort study: example from Egerup et al. (2020) 20

Research question: How larger is the 1-year risk of infection (leading to an hospitalization) among newborns of kidney-transplanted women?

Infection within first year of life

		yes	no	total
Kidney- transplanted	yes	26	98	124
mother	no	133	1098	1231
	total	159	1196	1355

The estimated risk ratio is $\widehat{RR} = 1.94$ (Cl_{95%} = [1.33; 2.83]).

Case-control study: example of Frachon et al.²¹

Research question: Is the use of benfluorex associated with unexplained mitral regurgitation?

- Case study described in the movie "150 Milligrams" (2016) (The original title in French is "La fille de Brest")
- France's biggest modern health scandal

6321 Fraction et al. "Benfluorex and unexplained valvular heart disease: a case-control study." PloS one 5.4 (20)

VERSITY OF COPENHAGEN

PARTMENT OF BIOSTATISTICS UNIVERSITY OF COPENHAG

DEPARTMENT OF BIOSTATISTICS

Case-control study: example of Frachon et al.²²

"unexplained"

mitral regurgitation

Benfluorex	
use	

	yes	no	total
yes	19	3	24
no	8	51	59
total	27	54	81

Mitral Valve Regurgitation

$$\widehat{OR} = 40.4 \ (CI_{95\%} : [9.7; 168])$$

The number of controls (here 2 per case) is defined by the study design. Hence we cannot estimate risks as one minus the proportions of controls among exposed and non-exposed...

- ▶ The statistic \widehat{RR} depends also on the ratio between controls and cases and should **not** be used for measuring association in case-control studies.
- ▶ The statistic \widehat{OR} works.

2

Why does \widehat{OR} work? (1/2)

Fig. 16.1. The probability model in the study base.

- 97% of the cases are included in the case-control study and 1% of the "non cases" are selected as controls; all included "blinded" from exposure (i.e. before leaking for the information on the exposure)
- Connection to notations of previous slides $\pi_1 = p_1$ and $\pi_0 = p_2$
- ► E="exposure", F="Fail", S="Survive", D="Disease", H="Healthy
- ▶ source: "Statistical models in Epidemiology", by Clayton and Hills, page 155

53/63 Erachon et al. "Benfluorex and unexplained valvular heart disease: a case-control study." PloS one 5.4 (2010

²⁰ Egerup et al. "Increased risk of neonatal complications and infections in children of kidney-transplanted women: A nationwide controlled cohort study." American journal of Transplantation (2020).

Why does \widehat{OR} work? (2/2)

Fig. 16.2. The probability tree for the retrospective argument.

source: "Statistical models in Epidemiology", by Clayton and Hills, page 156.

 $\widehat{OR} \approx \frac{\frac{0.1 \times \pi_1 \times 0.97}{0.1 \times (1 - \pi_1) \times 0.01}}{\frac{0.9 \times \pi_0 \times 0.97}{0.9 \times (1 - \pi_0) \times 0.01}}$ $= \frac{\pi_1/(1 - \pi_1)}{\pi_0/(1 - \pi_0)}$

Why does \widehat{OR} work? (2/2)

Fig. 16.2. The probability tree for the retrospective argument.

▶ source: "Statistical models in Epidemiology", by Clayton and Hills, page 156.

 $\widehat{OR} \approx \frac{\frac{0.1 \times \pi_1 \times 0.97}{0.1 \times (1 - \pi_1) \times 0.01}}{\frac{0.9 \times \pi_0 \times 0.97}{0.9 \times (1 - \pi_0) \times 0.01}}$ $= \frac{\pi_1 / (1 - \pi_1)}{\pi_0 / (1 - \pi_0)}$

but

$$\widehat{RR} \approx \frac{\frac{0.1 \times \pi_{1} \times 0.97}{0.1 \times \pi_{1} \times 0.97 + 0.1 \times (1 - \pi_{1}) \times 0.01}}{\frac{0.9 \times \pi_{0} \times 0.97}{0.9 \times \pi_{0} \times 0.97 + 0.9 \times (1 - \pi_{0}) \times 0.01}}$$

$$= \frac{\pi_{1} / (\pi_{1} \times 0.97 + (1 - \pi_{1}) \times 0.01)}{\pi_{0} / (\pi_{0} \times 0.97 + (1 - \pi_{0}) \times 0.01)}$$

$$\neq \frac{\pi_{1}}{\pi_{0}}$$

DEPA

EPARTMENT OF BIOSTATISTICS UNIVERSITY OF COPENHAG

DEPARTMENT OF BIOSTATISTICS

Outline/Intended Learning Outcomes (ILOs)

Preliminaries

ILO: calculate 95% Cls for population proportions

II O: distinguish between exact and approximate (asymptotic) 95% CIs

Group comparison

II O: to define a suitable association measure and compute its 05% C

ILO: to (correctly) use the v^2 test and Fisher's test

Sample size and power calculation

I O: to identify why and how to make power and sample size calculations

ILO: to analyse their strengths and limitations

Confounding

ILO: to exemplify confounding and its potential to be misleading

ILO: to name two commonly used remedies

Cohort vs case-control study

Il O: to differentiate the cohort and case control designs

II O: to restate which association measure(s) can be used for each design

Screening: jargon

ILO: to recognize some jargon

Paired binary data (if time allows

O: to exemplify paired binary data

ILO: to calculate appropriate 95%-Cl and p-values

Panis O

Medical test / screening: jargon

Y: Outcome (disease status) E.g. prostate cancer

 $X \colon \mathsf{Test} \ \mathsf{result} \ \mathsf{(biomarker)}. \ \mathsf{E.g.} \ X = \left\{ \begin{array}{ll} 1 & \mathsf{positive} \ \mathsf{if} \ \mathsf{PSA} > 4.0 \, \mathsf{ng/mL} \\ 0 & \mathsf{negative} \ \mathsf{if} \ \mathsf{PSA} \leq 4.0 \, \mathsf{ng/mL} \end{array} \right.$

Y=1 Y=0 X=1 True positive False positive X=0 False negative True negative

▶ True positive rate (sensitivity): P(X = 1 | Y = 1)

► True negative rate (specificity): $P(X = 0 \mid Y = 0)$

▶ False positive rate (1-specificity): $P(X = 1 \mid Y = 0)$

▶ The positive predictive value: $P(Y = 1 \mid X = 1)$

▶ The negative predictive value: $P(Y = 0 \mid X = 0)$

NIVERSITY OF COPENHAGEN

Outline/Intended Learning Outcomes (ILOs)

Preliminaries

ILO: calculate 95% CIs for population proportions

ILO: distinguish between exact and approximate (asymptotic) 95% CIs

Group comparison

ILO: to define a suitable association measure and compute its 95% CI

ILO: to (correctly) use the χ^2 test and Fisher's test

Sample size and power calculation

ILO: to identify why and how to make power and sample size calculations

ILO: to analyse their strengths and limitations

Confounding

ILO: to exemplify confounding and its potential to be misleading

ILO: to name two commonly used remedies

Cohort vs case-control study

ILO: to differentiate the cohort and case-control designs

ILO: to restate which association measure(s) can be used for each desigr

Screening: jargon

UNIVERSITY OF COPENHAGEN

ILO: to recognize some jargon

Paired binary data (if time allows)

ILO: to exemplify paired binary data

ILO: to calculate appropriate 95%-CI and p-values

When do we typically meet paired binary data?

► Comparison of diagnostic tests

Example: compare sensitivity (i.e. True Positive Rate) of two diagnostic tests based on either Method 1 (e.g. Blood culture) or Method 2 (e.g. PCR: Polymerase Chain Reaction) using the the same blood samples (i.e. same patients).

► Crossover clinical trials

Example: compare two sedatives, w.r.t. proportions of side effects (e.g. not waking when fire alarm rings), each drug is given to each patient one evening (two evenings separated by one week). The same patients receive the two drugs.

59 / 63

DEPA

PARTMENT OF BIOSTATISTICS UNIVERSITY OF COPENHAG

DEPARTMENT OF BIOSTATISTIC

Why does pairing matter?

► Comparison of diagnostic tests

Example (cont'): blood samples of "heavily" infected patients are easier to test positive than those of "mildly" infected patients. Hence, if one test is positive, the chance that the second test is positive is higher than expected in average.

Crossover clinical trials

Example (cont'): some people sleep better than others. Some will never wake no matter what. Others are bad sleepers and will always wake. Hence, if a subject wakes the first night, the chance that he/she wakes up the second night is higher than expected in average.

Take home message: we expect less variability between two observations from the same patient than between two observations from two different patients. Appropriate statistical analysis will recognize this smaller variability. Less variability implies less random variation, which further implies more certainty, that is, narrower 95% CI and smaller p-values (than if the pairing was "wrongly" ignored).

How are paired data often presented?

► Comparison of diagnostic tests²³

Example (cont'):

		PCR-test		
		Negative	Positive	
BC-test	Negative	1	19	
DC-test	Positive	2	2	

Remarks:

- 1. This 2 by 2 table shows the pairing (and the raw data).
- 2. If the sensitivity of the two diagnostic tests are equally good, we expect (approx.) the same counts in the "upper right" and "lower left" cells.

 23 Example from: Nguyen et al. "Performance of Candida real-time polymerase chain reaction, β -D-glucan assay, and blood cultures

60 / 63

Which statistical method with paired binary data?

- ► For p-value computation, we often use a McNemar's test
- ► Modern software can compute an "exact" version of the McNemar's test.
- ► An exact confidence interval can be computed for each of the two compared specificities (as seen in the first slides of the lecture)²⁴

Which R code and conclusions?

Conclusions:

The sensitivity of the PCR test (88%, 95%-CI=[68,97]) was found significantly higher than that of the blood culture test (17%, 95%-CI=[5,37]) among patients with deep-seated candidiasis (p-value<0.001).

 $_{62/65}^{24}$ Large sample (i.e. "approximate") confidence intervals can be computed for the difference in proportions (not shown in this course), but no "exact" method exists.

