Outline/Intended Learning Outcomes (ILOs)

Preliminaries
ILO: calculate 95% Cls for population proportions
ILO: distinguish between exact and approximate (asymptotic) 95\% Cls

Binary outcomes and frequency tables

Basic Statistics for health researchers

Alessandra Meddis
Section of Biostatistics, University of Copenhagen

Binary outcome

Parameters

- Prevalence: proportion of the population with event at fixed time point.

How many have the disease right now?

- Risk: probability that event occurs in given time period:

How likely will a subject acquire the disease within 1-year?

Statistical inference

Exact confidence intervals

Estimating risks and prevalence

$$
\widehat{p}=\text { Relative frequency }=\frac{\text { Number of events }}{\text { Number of subjects }}=\frac{x}{n}
$$

Confidence limits: normal approximation ("large" n^{1})

$$
\left[\widehat{p}-1.96 \sqrt{\frac{\widehat{p}(1-\widehat{p})}{n}} ; \widehat{p}+1.96 \sqrt{\frac{\widehat{p}(1-\widehat{p})}{n}}\right]
$$

Confidence limits: "exact" (any n)

Example:

- $x=7$ (number of events)
- $n=43$ (number of subjects) $\rightarrow \hat{p}=7 / 43=16.3 \%$
We want to be sure at 95% that the true value falls inside the confidence interval $\left[p_{L} ; p_{U}\right]$

Exact confidence intervals

Example:

- $x=7$ (number of events)
- $n=43$ (number of subjects)
$\rightarrow \hat{p}=7 / 43=16.3 \%$
We want to be sure at 95% that the true value falls inside the confidence interval $\left[p_{L} ; p_{U}\right]$

Binomial Distribution:

$$
\begin{gathered}
\mathbf{P}(X=x)=\binom{n}{x} p^{x}(1-p)^{n-x} \\
\mathbf{P}(X \leq x)=\sum_{i=0}^{x}\binom{n}{i} p^{i}(1-p)^{n-i}
\end{gathered}
$$

Exact confidence intervals

Example:

- $x=7$ (number of events)
- $n=43$ (number of subjects)

$$
\rightarrow \hat{p}=7 / 43=16.3 \%
$$

We want to be sure at 95% that the true value falls inside the confidence interval $\left[p_{L} ; p_{U}\right]$

Binomial Distribution:

$$
\mathbf{P}(X \leq 7)=\sum_{i=0}^{x}\binom{n}{i} p^{i}(1-p)^{n-i}
$$

To obtain the exact confidence interval, we look for:

$$
\mathrm{p}_{U} \quad \text { s.t. } \mathbf{P}(X \leq 7)=0.025
$$

$$
\mathrm{p}_{L} \quad \text { s.t. } \mathbf{P}(X \geq 7)=0.025
$$

Exact confidence intervals (computation/intuition)

- $x=7$ and $n=43$ leads to $\hat{p}=16.3 \%$ and $95 \% \mathrm{CI}=[6.8 ; 30.7]$.
\therefore - $x=7$ and $n=43$ leads to $\hat{p}=16.3 \%$ and $95 \% \mathrm{CI}=[6.8 ; 30.7]$.

Exact confidence intervals (computation/intuition)

- $x=7$ and $n=43$ leads to $\hat{p}=16.3 \%$ and $95 \% \mathrm{CI}=[6.8 ; 30.7]$.

Exact confidence intervals (computation/intuition)

Exact confidence intervals (computation/intuition)

Exact confidence intervals (computation/intuition)

- $x=7$ and $n=43$ leads to $\hat{p}=16.3 \%$ and $95 \% \mathrm{CI}=[6.8 ; 30.7]$.

Exact confidence intervals (computation/intuition)

- $x=7$ and $n=43$ leads to $\hat{p}=16.3 \%$ and $95 \% \mathrm{CI}=[6.8 ; 30.7]$.

Normal approximation

- Binomial distribution: $P(X=x)=\binom{N}{x} p^{x}(1-p)^{N-x}$
$\rightarrow x=7$ and $n=43$ leads to $\hat{p}=16.3 \%$ and $95 \% \mathrm{Cl}=[5.2 ; 27.3]$.

Normal approximation

${ }^{{ }^{33}}>x=7$ and $n=43$ leads to $\hat{p}=16.3 \%$ and $95 \% \mathrm{Cl}=[5.2 ; 27.3]$.

Outline/Intended Learning Outcomes (ILOs)

Preliminaries

Group comparison
ILO: to define a suitable association measure and compute its $95 \% \mathrm{CI}$
ILO: to (correctly) use the χ^{2} test and Fisher's test
Sample size and power calculation
ILO: to identify why and how to make power and sample size calculations
Confounding
ILO: to exemplify confounding and its potential to be misleading
Cohort vs case-control study
ILO: to differentiate the cohort and case-control designs
ILO: to restate which association measure(s) can be used for each design
Screening: jargon
Paired binary data (if time allows)

Case: clinical trial on Dalteparin ${ }^{3}$
Data: $n=85$ diabetic patients with peripheral arterial occlusive disease and chronic foot ulcers, randmomized (double-blind) to:

- Placebo ($n=42$)
- Dalteparin $(n=43)$

Outcome:

Outcome: Category 2	Label
intact skin	healed
decreased ulcer area $\geq 50 \%$	improved
increased ulcer area $\geq 50 \%$	impaired
decreased or increased ulcer area $<50 \%$	unchanged
amputation above/below ankle	amputation

Research question: Does Dalteparin improve the outcome, when injected once daily until ulcer healing or for a maximum of 6 months?

[^0]Frequency table
Barplot (frequencies)

	Dalteparin	Placebo
Healed	$14(33 \%)$	$9(21 \%)$
Improved	$15(35 \%)$	$11(26 \%)$
Unchanged	$7(16 \%)$	$9(21 \%)$
Impaired	$5(12 \%)$	$5(12 \%)$
Amputation	$2(5 \%)$	$8(19 \%)$
total (100\%)	43	42

- Summarizes the outcome data.
- Prepare/Format data for analyzes.

Barplot (proportions ${ }^{4}$)

Here we pool the outcome categories as follows

Category	Dichotomized outcome
intact skin	better
ulcer area decreased $\geq 50 \%$	
decreased or increased ulcer area $<50 \%$	
increased ulcer area $\geq 50 \%$	worse
amputation above/below ankle	

Important: this dichotomization should be prespecified (i.e. decision made before seeing the data). ${ }^{5}$
${ }^{5}$ For an illustration of why prespecification matters, see e.g. Austin \& Goldwasser. "Pisces did not have increased heart
failare: data-driven comparisons of binary proportions between levels of a categorical variable can result in incorrect statistical sig

Group comparison

Placebo group

$$
\text { Risk of worse outcome }=\frac{22}{42}=\widehat{p}_{1}
$$

Dalteparin group
Risk of worse outcome $=\frac{14}{43}=\widehat{p}_{2}$

Group comparison

Placebo group

$$
\text { Risk of worse outcome }=\frac{22}{42}=\widehat{p}_{1}
$$

Dalteparin group

Risk of worse outcome $=\frac{14}{43}=\widehat{p}_{2}$

Association measures ${ }^{6}$

$$
\text { Relative risk: } \frac{\widehat{p}_{1}}{\widehat{p}_{2}} \quad \text { Odds ratio: } \frac{\frac{\widehat{p}_{1}}{1-\widehat{p}_{1}}}{\frac{\widehat{p}_{2}}{1-\widehat{p}_{2}}} \quad \text { Risk difference: } \widehat{p}_{1}-\widehat{p}_{2}
$$

${ }^{6}$ whenever possible, we prefer using risk ratios or risk differences to odds ratios
${ }^{14 / 43}$ hey are often better understood and easier to communicate!

[^1]
Relative risk

$$
\widehat{R R}=\frac{a /(a+b)}{c /(c+d)}
$$

Exposure

Response			
	yes	no	total
yes	a	b	$\mathrm{a}+\mathrm{b}$
no	c	d	$\mathrm{c}+\mathrm{d}$
total	$\mathrm{a}+\mathrm{c}$	$\mathrm{b}+\mathrm{d}$	N

Standard error of $\log (\widehat{R R})$ and confidence interval of RR^{7}

$$
\widehat{p}_{1}=\frac{a}{a+b} \quad \widehat{p}_{2}=\frac{c}{c+d}
$$

$$
\begin{aligned}
\widehat{\sigma} & =\sqrt{\frac{1}{a}-\frac{1}{a+b}+\frac{1}{c}-\frac{1}{c+d}} \\
\log (R R): C I_{95 \%} & =[\log (\widehat{R R})-1.96 \widehat{\sigma}) ; \log (\widehat{R R})+1.96 \widehat{\sigma})] \\
R R: C I_{95 \%} & =[\widehat{R R} \cdot \exp (-1.96 \widehat{\sigma}) ; \widehat{R R} \cdot \exp (1.96 \widehat{\sigma})]
\end{aligned}
$$

[^2]Relative risk: placebo versus dalteparin
Relative risk: placebo versus dalteparin

$$
\widehat{R R}=\frac{22 / 42}{14 / 43}=1.609
$$

Treatment

Outcome			
	worse	better	total
placebo	22	20	42
dalteparin	14	29	43
total	36	49	85

Standard error of $\log (\widehat{R R})$ and confidence interval

$$
\begin{aligned}
\hat{\sigma} & =\sqrt{\frac{1}{22}-\frac{1}{42}+\frac{1}{14}-\frac{1}{43}}=0.264 \\
C I_{95 \%} & =[0.959 ; 2.7](\text { does include } 1)
\end{aligned}
$$

The risk in the placebo group is 1.6 times higher then the risk in the dalteparin group and the risk among patients on placebo could be between 0.9 times lower and 2.7 higher compared with patients on dalteparin. \qquad

Risk difference
$\widehat{\Delta}=\frac{a}{a+b}-\frac{c}{c+d}$

Response			
	yes	no	total
yes	a	b	$a+b$
no	c	d	$c+d$
total	$a+c$	$b+d$	N

Risk difference: placebo versus dalteparin
The risk in the dalteparin group is reduced by a factor 0.622 compared to the placebo group....

Standard error of $\widehat{\Delta}$ and confidence interval ${ }^{8}$

$$
\begin{aligned}
\widehat{\sigma} & =\sqrt{a b /(a+b)^{3}+c d /(c+d)^{3}} \\
C I_{95 \%} & =[\widehat{\Delta}-1.96 \widehat{\sigma} ; \widehat{\Delta}-1.96 \widehat{\sigma}]
\end{aligned}
$$

Treatment

Outcome			
	worse	better	total
placebo	22	20	42
dalteparin	14	29	43
total	36	49	85

Standard error of $\widehat{\Delta}$ and confidence interval

$$
\begin{aligned}
\widehat{\sigma} & =\sqrt{22 \cdot 20 / 42^{3}+14 \cdot 29 / 43^{3}}=0.105 \\
C I_{95 \%} & =[-0.008 ; 0.404] \quad(\text { does include } 0)
\end{aligned}
$$

$\widehat{\Delta}=\frac{22}{42}-\frac{14}{43}=0.198$

Risk difference: placebo versus dalteparin
$\widehat{\Delta}=\frac{22}{42}-\frac{14}{43}=0.198$
Treatment

Outcome			
	worse	better	total
placebo	22	20	42
dalteparin	14	29	43
total	36	49	85

Standard error of $\widehat{\Delta}$ and confidence interval

$$
\begin{aligned}
\widehat{\sigma} & =\sqrt{22 \cdot 20 / 42^{3}+14 \cdot 29 / 43^{3}}=0.105 \\
C I_{95 \%} & =[-0.008 ; 0.404] \quad(\text { does include } 0)
\end{aligned}
$$

The risk among patients on placebo is 19.8% higher compared to risk in the deltaparin group, the risk in the placebo group could be between 0.8% lower and 40.4% higher compared with patients on dalteparin.
${ }^{19} / 63$

Odds Ratio (OR)

Odds: ratio of the probability of success by probability of failure

$$
\text { odds }=p /(1-p)
$$

and the risk can be computed back from the odds, $p=$ odds $/(1+$ odds $)$. Odds are difficult to interpret, but if risks are small, then risks \approx odds.

The Odds ratio (OR) is defined as the ratio of the odds

$$
O R=\frac{\text { odds }_{1}}{\text { odds }_{2}}=\frac{p_{1} /\left(1-p_{1}\right)}{p_{2} /\left(1-p_{2}\right)}
$$

Concept needed for

- case-control studies (stay tuned!)
- logistic regression (next week)

20/63

$$
O R=\frac{\text { odds }_{1}}{\text { odds }_{2}}=\frac{p_{1} /\left(1-p_{1}\right)}{p_{2} /\left(1-p_{2}\right)}
$$

OR are difficult to interpret, but from the equation...

$$
\begin{aligned}
& R R=\frac{O R}{\left\{1-p_{2}\right\}+p_{2} O R}, \\
& \text { - } O R>1 \Leftrightarrow R R>1 \\
& \text { - } O R=1 \Leftrightarrow R R=1 \\
& \text { - } O R<1 \Leftrightarrow R R<1
\end{aligned}
$$

...and further conclude that

- the OR is sufficient to deduce whether a risk increases or decreases.
- if p_{2} is small (e.g. rare disease), then $O R \approx R R$.

When is $O R \approx R R$?

Odds ratio

$$
\widehat{O R}=\frac{\frac{a /(a+b)}{b /(a+b)}}{\frac{c /(c+d)}{d /(c+d)}}=\frac{a \cdot d}{b \cdot c} \quad \text { Exposure } \quad
$$

Standard error of $\log (\widehat{O R})$ and confidence interval ${ }^{9}$

$$
\begin{aligned}
\widehat{\sigma} & =\sqrt{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}} \\
C I_{95 \%} & =[\widehat{O R} \cdot \exp (-1.96 \widehat{\sigma}) ; \widehat{O R} \cdot \exp (1.96 \widehat{\sigma})]
\end{aligned}
$$

Odds ratio: placebo versus dalteparin
$\widehat{O R}=\frac{22 \cdot 29}{14 \cdot 20}=2.279$
Treatment

Outcome			
	worse	better	total
placebo	22	20	42
dalteparin	14	29	43
total	36	49	85

Reporting results

The relative risk (of worsening) of group 1 (Dalteparin) versus group 2 (Placebo) is estimated as

$$
R R=\frac{14 / 43}{22 / 42}=0.622
$$

Equivalent statements:

- The risk in group 1 is reduced by a factor 0.622 compared to group 2 .
- The risk in group 1 is 37.8% lower than in group $2 .^{10}$
- The risk in group 2 is 1.609 times higher than in group $1 .^{11}$
- The risk in group 2 is 60.9% higher than in group 1 .

The placebo group has 2.3 times higher odds of experiencing the worse outcome compared to the dalteparin group. -
${ }^{163}$ because $1-0.622=0.378$
${ }^{55 / 6311}$ because $1 / 0.622=1.609$

The χ^{2} test statistic

$$
\chi^{2}=\sum \frac{(\text { observed counts }- \text { expected counts })^{2}}{\text { expected counts }}
$$

Observed counts

Expected counts

- The expected counts are calculated under the null hypothesis of independence between exposure and response
- in a population of size n, for a given risk of event p, we expect to see (on average) $n p$ events in this population

Popular tests of independence between the treatment group and the outcome groups:

- χ^{2} test (normal approximation) ${ }^{12}$
- Fisher's exact test: recommended as the default choice! ${ }^{13}$

[^3]
The χ^{2} test statistic

$$
\chi^{2}=\sum \frac{(\text { observed counts }- \text { expected counts })^{2}}{\text { expected counts }}
$$

Observed counts

Expected counts

Exposure

- The expected counts are calculated under the null hypothesis of independence between exposure and response
- in a population of size n, for a given risk of event p, we expect to see (on average) $n p$ events in this population
Example: Expected counts for Exposed=yes, Response=yes $\left(\mathbf{E}_{11}\right)$:

The χ^{2} test statistic

$$
\chi^{2}=\sum \frac{(\text { observed counts }- \text { expected counts })^{2}}{\text { expected counts }}
$$

Observed counts
Expected counts

- The expected counts are calculated under the null hypothesis of independence between exposure and response
- in a population of size n, for a given risk of event p, we expect to see (on average) $n p$ events in this population
Example: Expected counts for Exposed=yes, Response=yes $\left(\mathbf{E}_{11}\right)$:

$$
p=\mathbf{P}(\text { Exposed }=\text { yes }, \text { Response }=\text { yes })=\mathbf{P}(\text { Exposed }=\text { yes }) \cdot \mathbf{P}(\text { Response }=\text { yes })
$$

The χ^{2} test statistic

$$
\chi^{2}=\sum \frac{(\text { observed counts }- \text { expected counts })^{2}}{\text { expected counts }}
$$

Observed counts

Expected counts

- The expected counts are calculated under the null hypothesis of independence between exposure and response
- in a population of size n, for a given risk of event p, we expect to see (on average) $n p$ events in this population
Example: Expected counts for Exposed=yes, Response=yes $\left(\mathbf{E}_{11}\right)$:

$$
p=\mathbf{P}(\text { Exposed }=y e s, \text { Response }=\text { yes })=\mathbf{P}(\text { Exposed }=\text { yes }) \cdot \mathbf{P}(\text { Response }=y e s)
$$

$$
p=\frac{a+b}{N} \cdot \frac{a+c}{N}
$$

$$
p=\frac{a+b}{N} \cdot \frac{a+c}{N}
$$

The χ^{2} test statistic

$$
\chi^{2}=\sum \frac{(\text { observed counts }- \text { expected counts })^{2}}{\text { expected counts }}
$$

Observed counts

Expected counts
under the null hypothesis.

Rule of thumb: a valid analysis requires that all expected counts are ≥ 5.

- under the null hypothesis the groups are identical, hence data can be merged into a single group
${ }_{28 / 63} \quad \begin{aligned} & \text { in a population of size } n \text {, for a a given risk of event } p \text {, we } \\ & \text { expect to see (on average) } n p \text { events in this population }\end{aligned}$

Test results

Null hypothesis:
dalteparin treatment has no effect for chronic foot ulcers.

Test	p -value
Fisher's exact test	0.0808
Pearson's χ^{2} test	0.0644
Pearson's χ^{2} test with Yates' continuity correction ${ }^{14}$	0.1032

R code:

```
tab <- rbind(c(22,20),c(14,29))
fisher.test(tab) # always works (default choice!)
chisq.test(tab,correct=FALSE) # fine with large samples
chisq.test(tab,correct=TRUE) # no longer useful
```

${ }^{20 / 63}$ Expected to be more precise than the usual Pearson's χ^{2} test when the sample size is ve
${ }_{5}^{20 / 63}$ small. NOT RECOMMENDED, with small sample sizes, use Fisher's test instead.

A note of caution

Because the (simple) formulas for the $95 \% \mathrm{Cl}$ (of the previous slides) are based on large sample size approximations, they are not necessarily consistent with the result of the Fisher's exact test, especially with "very small" sample sizes.

Example:

	event	no event
exposed	5	12
non-exposed	8	3

- $\widehat{p}_{1}=8 / 11=0.73, \quad \widehat{p}_{2}=5 / 17=0.29$.
- $\widehat{\Delta}=0.43(0.09 ; 0.77)$
- $\widehat{R R}=2.47(1.09 ; 5.62)$
- $\widehat{O R}=6.40(1.18 ; 34.61)$
- p-values from Fisher's exact test and Pearson's χ^{2} (with and without Yates correction) are $0.051,0.063$ and 0.025 , respectively.

Advanced methods and software ${ }^{15}$ are available to avoid running into this kind of inconsistency between hypothesis test and confidence intervals.

Fortunately, it is rare that we run into this problem.... and even rarer that it matters for the interpretation.

Here the confidence intervals show a significant result, but not Fisher's test.

Larger contigency tables (1/2)

If the table is not 2×2 but, e.g., 3×4 or 2×4, the χ^{2} test and Fisher's exact test are testing an "ANOVA-like" null hypothesis similarly to what the F-test does to compare several means.

First example:

	underweight	normal	overweight	obese
no SCD	9	51	20	8
SCD	23	61	3	1

R code:
fisher.test(table(d\$SCD, d\$BMIgroup))
returns a p -value <0.001, for the null hypothesis
H_{0} : "the prevalence of SCD is the same in all groups of BMI"
that is, "no association between BMI group and SCD".
${ }^{32 / 63}$

Larger contigency tables (2/2)

Second example:

	underweight	normal	overweight	obese
age $=[16,25)$	14	45	1	1
$[25,30)$	3	25	3	1
$[30,67]$	15	42	19	7

R code:
fisher.test(table(d\$ageGroup, d\$BMIgroup))
returns p -value $=0.004$, for the null hypothesis
H_{0} : "the prevalence of each BMI group is the same in all groups of age
that is, "no association between BMI group and age".
33/63

Sample size and power calculation

Sample size and power calculation is mostly useful for designing clinical trials to determine the appropriate sample size needed to detect the expected effect size with sufficient statistical power.
However, this could be a useful tool in observational studies to understand what is possible to achieve with the available data.

Sample size and power calculation
ILO: to identify why and how to make power and sample size calculations ILO: to analyse their strengths and limitations
Confounding
ILO: to exemplify confounding and its potential to be misleading
ILO. to name two commonly used remedies
Cohort vs case-control study
ILO: to differentiate the cohort and case-control designs
ILO: to restate which association measure(s) can be used for each design
Screening: jargon
ILO: to recognize some jargon

Paired binary data (if time allows)
ILO: to exemplify paired binary data
34/63
-

Sample size and power calculation

Sample size and power calculation is mostly useful for designing clinical trials to determine the appropriate sample size needed to detect the expected effect size with sufficient statistical power.
However, this could be a useful tool in observational studies to understand what is possible to achieve with the available data.

Textbook formula ("large n " approximation)

$$
n=\frac{\left\{z_{\alpha / 2} \sqrt{2 \bar{p}(1-\bar{p})}+z_{\beta} \sqrt{p_{1}\left(1-p_{1}\right)+p_{2}\left(1-p_{2}\right)}\right\}^{2}}{\left(p_{1}-p_{2}\right)^{2}}
$$

- z_{γ} is the γ-quantile of a standard normal distribution ${ }^{16}$
- $\bar{p}=\left(p_{1}+p_{2}\right) / 2$.
- n : number of observations in each group.

5016

When calculating the sample size we need to specify:

- expected $p_{1}, p_{2} \rightarrow$ expected size effect
- the desired power $(1-\beta)$ and Type I error (α)

Reverse the formula to compute:

- Power for a given sample size: for expected values of p_{1} and p_{2} and desired n and α.
- Least detectable difference (or ratio): $\delta=p_{1}-p_{2}$ (or $r=p_{1} / p_{2}$) for given n, expected p_{1}, desired α and minimal power $(1-\beta)$.

Sample size calculation

Subjects needed to detect significant risk difference with a power of 80%, if the risks in the two groups are 25% and 50%.

Standard software can be used, e.g. R:
power.prop.test(p1 $=0.25, \mathrm{p} 2=0.5$, power=0.8)
Two-sample comparison of proportions power calculation

$$
\mathrm{n}=57.67344
$$

$$
\begin{aligned}
& \mathrm{p} 1=0.25 \\
& \mathrm{p} 2=0.5
\end{aligned}
$$

sig.level $=0.05$
power $=0.8$
alternative $=$ two.sided
NOTE: n is number in *each* group

- $n=58$ subjects needed in each group (i.e. 116 in total) to detect significant risk difference with a power of 80% and $\alpha=0.05$.
- at fixed $p_{2}=0.5$, for larger p_{1}, namely decreasing the risk difference, observe a fast increase in the needed sample size.

Power calculation

Example: an initial calculation suggests $n=58$ subjects per group (i.e. 116 in total), for detecting a difference of 25% survival between the two groups, assuming 50\% survival in the placebo group (with 80% power). But what does the power become if we were too optimistic with the expected treatment effect? E.g. what if the difference in survival probability is only 15% ?
power.prop.test(n=58, p1 $=0.35, \mathrm{p} 2=0.5$)
Two-sample comparison of proportions power calculation

$$
\begin{aligned}
\mathrm{n} & =58 \\
\mathrm{p} 1 & =0.35
\end{aligned}
$$

$$
\mathrm{p} 2=0.5
$$

$\begin{aligned} \text { sig. level } & =0.05 \\ \text { power } & =0.3707966\end{aligned}$
alternative $=$ two.sided
NOTE: n is number in *each* group

- power $=38 \%$ enrolling 116 individuals (58 foe each group) and 15% increase in the survival probability.

Least detectable difference

Example: My grant can finance a total sample size of $n=150$ (i.e. 75 per group). What is the smallest survival difference that I can hope to show with a decent power (e.g. 80\%), if I expect 80% survival in the "standard of care" (i.e. control) group? And if I expect 85% in the "standard of care" group?
power.prop.test(n=75, p1 = 0.8, power=0.8)
Two-sample comparison of proportions power calculation

$$
\mathrm{n}=75
$$

$$
\mathrm{p} 1=0.8
$$

p2 $=0.950095$
sig.level $=0.05$
power $=0.8$
alternative $=$ two.sided
NOTE: n is number in *each* group

One power/sample size calculation is often not enough.
It is good to understand how the needed sample size and power are affected by varying p_{1} and p_{2}

Discussions on

- Budget and resources allocations
- Ethical implications
- Is it worth continuing with the study knowing that we have small power?

Note: you need to supply a value for p1, not p2, otherwise the software is looking for a lower riske and it returns 0.72 .

Outline/Intended Learning Outcomes (ILOs)

Preliminaries
ILO: calculate 95% Cls for population proportions
ILO: distinguish between exact and approximate (asymptotic) 95\% Cls
Group comparison
ILO: to define a suitable association measure and compute its $95 \% \mathrm{Cl}$
ILO: to (correctly) use the χ^{2} test and Fisher's test
Sample size and power calculation
ILO: to identify why and how to make power and sample size calculations
ILO: to analyse their strengths and limitations

Confounding

ILO: to exemplify confounding and its potential to be misleading
ILO: to name two commonly used remedies
Cohort vs case-control study
ILO: to differentiate the cohort and case-control designs
ILO: to restate which association measure(s) can be used for each design
Screening: jargon
ILO: to recognize some jargon

Confounding

"A simple definition of confounding is the confusion of effects. This definition implies that the effect of the exposure is mixed with the effect of another variable, leading to a bias."17

Failing to take a confounding variable into account can lead to a false conclusion that the outcome are in a causal relationship with the predictor variable.

Confounding variables are typically encountered in observational studies, but not in "ideal" randomized experiments.

Paired binary data (if time allows)

Confounding example (birth order and risk of Down syndrome ${ }^{18}$)

Confounding example (birth order and risk of Down syndrome ${ }^{18}$)

Confounding example (birth order and risk of Down syndrome ${ }^{18}$)

When can association mean causation? (1/2)
When can association mean causation? (1/2)

We usually say that (statistical) association does not imply causation

- Association: when changes in one variable are observed alongside changes in another variable
- Causation: changes in one variable directly cause changes in another variable.

We usually say that (statistical) association does not imply causation

- Association: when changes in one variable are observed alongside changes in another variable
- Causation: changes in one variable directly cause changes in another variable.
- Example:
- Clear association between Being Danish and enjoying licorice-flavored treats. However, being Danish not cause an individual to like licorice, nor does liking licorice cause someone to be Danish

When can association mean causation? (1/2)

We usually say that (statistical) association does not imply causation

- Association: when changes in one variable are observed alongside changes in another variable
- Causation: changes in one variable directly cause changes in another variable.

In presence of confounding we might not be able to identify the true causal effect.

We need (among others) that the groups we are comparing are similar with respect to everything except the treatment under study (exchangeability assumption).

When we succeed to correctly control for confounding, conditional exchangeability holds and association can be interpreted as causation.

When can association mean causation? (2/2)

An example where association implies causation is "ideal" randomized experiments
The randomization ensures that the two groups that we compare are similar with respect to everything except the intervention / treatment under study. Hence, if a difference in outcome is observed between the two groups, then we can be confident that this is the consequence of this unique difference in exposure / treatment

In non-randomized (or non "ideally" randomized) experiments the two compared groups will usually differ with respect to more than one characteristic. This generates multiple plausible explanations for the observation of the difference in outcome - some causal and some non causal.

Adjusted analysis

Suppose that in addition to the outcome and the exposure group a categorical confounder variable (e.g. gender) is measured for each individual.

- Subgroup analysis

Analyze 2×2 contingency tables separately in each strata defined by the confounder variable.

```
- Logistic regression (next week)
```

To compute a "weighted" average of the subgroup analyses, assuming that the exposure-outcome association is the same in all subgroups. ${ }^{19}$.

Observational study design

In a prospective cohort study, an outcome or disease-free study population is first identified by an exposure (e.g., onset of diabetes) or other inclusion criteria and followed in time until the disease or outcome of interest occurs.

Case-control studies identify subjects by outcome status at the outset of the investigation. First, subjects with outcome are identified and classified as cases. For each case a given number of controls (e.g., 4) are selected. A candidate control is a subject without the outcome but from the same source population.

Outline/Intended Learning Outcomes (ILOs)

Preliminaries

Group comparison

Sample size and power calculation

Confounding

Cohort vs case-control study
ILO: to differentiate the cohort and case-control designs
ILO: to restate which association measure(s) can be used for each design

Observational Study Designs: Case Control vs Cohort

Cohort study: example from Egerup et al. (2020) ${ }^{20}$

Research question: How larger is the 1-year risk of infection (leading to an hospitalization) among newborns of kidney-transplanted women?

The estimated risk ratio is $\widehat{R R}=1.94\left(\mathrm{Cl}_{95 \%}=[1.33 ; 2.83]\right)$.
${ }^{51} 20$ Egerup et al. "Increased risk of neonatal complications and infections in children of kidney-transplanted women: A nation
controlled cotort study." American Journal of Transpiantation (2020).
controlled cohort study." Ame

Case-control study: example of Frachon et al. ${ }^{22}$

	"unexplained"			
	mitral regurgitation			
		yes	no	total
Benfluorex use	yes	19	3	24
	no	8	51	59
	total	27	54	81

$\widehat{O R}=40.4\left(C I_{95 \%}:[9.7 ; 168]\right)$
Mitral Valve Regurgitation

The number of controls (here 2 per case) is defined by the study design. Hence we cannot estimate risks as one minus the proportions of controls among exposed and non-exposed..

- The statistic $\widehat{R R}$ depends also on the ratio between controls and cases and should not be used for measuring association in case-control studies.
- The statistic $\widehat{O R}$ works.

Case-control study: example of Frachon et al. ${ }^{21}$

Research question: Is the use of benfluorex associated with unexplained mitral regurgitation?

- Case study described in the movie "150 Milligrams" (2016) (The original title in French is "La fille de Brest")
- France's biggest modern health scandal
${ }^{52 / 63} 21_{\text {Frachon et al. "Benfluorex and unexplained valvular heart disease: a case-control study." PloS one } 5.4 \text { (2010). }}$

Why does $\widehat{O R}$ work? (1/2)

$$
O R=\frac{\pi_{1} /\left(1-\pi_{1}\right)}{\pi_{0} /\left(1-\pi_{0}\right)}
$$

Fig. 16.1. The probability model in the study base.

- 97% of the cases are included in the case-control study and 1% of the "non cases" are selected as controls; all included "blinded"
from exposure (i.e. before looking for the information on the exposure).
- Connection to notations of previous slides $\pi_{1}=p_{1}$ and $\pi_{0}=p_{2}$.
- $\mathrm{E}=$ "exposure", $\mathrm{F}=$ "Fail", $\mathrm{S}=$ "Survive", $\mathrm{D}=$ "Disease", $\mathrm{H}=$ "Healthy".
- source: "Statistical models in Epidemiology", by Clayton and Hills, page 155

Why does $\widehat{O R}$ work? (2/2)

Why does $\widehat{O R}$ work? (2/2)

Fig. 16.2. The probability tree for the retrospective argument.

- source: "Statistical models in Epidemiology", by Clayton and Hills, page 156.

55/63

Medical test / screening: jargon

Y: Outcome (disease status) E.g. prostate cancer
X : Test result (biomarker). E.g. $X= \begin{cases}1 & \text { positive if PSA }>4.0 \mathrm{ng} / \mathrm{mL} \\ 0 & \text { negative if PSA } \leq 4.0 \mathrm{ng} / \mathrm{mL}\end{cases}$

$$
\begin{array}{lll}
& Y=1 & Y=0 \\
\hline X=1 & \text { True positive } & \text { False positive } \\
X=0 & \text { False negative } & \text { True negative }
\end{array}
$$

- True positive rate (sensitivity): $P(X=1 \mid Y=1)$
- True negative rate (specificity): $P(X=0 \mid Y=0)$
- False positive rate (1-specificity): $P(X=1 \mid Y=0)$
- The positive predictive value: $P(Y=1 \mid X=1)$
- The negative predictive value: $P(Y=0 \mid X=0)$

Outline/Intended Learning Outcomes (ILOs)
When do we typically meet paired binary data?
Preliminaries
ILO: calculate $95 \% \mathrm{Cls}$ for population proportions
ILO: distinguish between exact and approximate (asymptotic) $95 \% \mathrm{Cls}$

Group comparison
ILO: to define a suitable association measure and compute its $95 \% \mathrm{Cl}$
Sample size and power calculation
ILO: to identify why and how to make power and sample size calculations
ILO: to analyse their strengths and limitations
Confounding
ILO: to exemplify confounding and its potential to be misleading
ILO: to name two commonly used remedies
Cohort vs case-control study
ILO: to differentiate the cohort and case-control designs
ILO: to restate which association measure(s) can be used for each design
Screening: jargon
Paired binary data (if time allows)
ILO: to exemplify paired binary data
s8/63 ILO: to calculate appropriate $95 \%-\mathrm{Cl}$ and p-values

- Comparison of diagnostic tests

- Example: compare sensitivity (i.e. True Positive Rate) of two diagnostic tests based on either Method 1 (e.g. Blood culture) or Method 2 (e.g. PCR: Polymerase Chain Reaction) using the the same blood samples (i.e. same patients).

- Crossover clinical trials

- Example: compare two sedatives, w.r.t. proportions of side effects (e.g. not waking when fire alarm rings), each drug is given to each patient one evening (two evenings separated by one week). The same patients receive the two drugs.

Why does pairing matter?

- Comparison of diagnostic tests
- Example (cont'): blood samples of "heavily" infected patients are easier to test positive than those of "mildly" infected patients. Hence, if one test is positive, the chance that the second test is positive is higher than expected in average.
- Crossover clinical trials
- Example (cont'): some people sleep better than others. Some will never wake no matter what. Others are bad sleepers and will always wake. Hence, if a subject wakes the first night, the chance that he/she wakes up the second night is higher than expected in average.

Take home message: we expect less variability between two observations from the same patient than between two observations from two different patients. Appropriate statistical analysis will recognize this smaller variability. Less variability implies less random variation, which further implies more certainty, that is, narrower $95 \% \mathrm{Cl}$ and smaller p-values (than if the pairing was "wrongly" ignored).

How are paired data often presented?

- Comparison of diagnostic tests ${ }^{23}$

- Example (cont'):

| | PCR-test
 Negative | |
| :---: | :---: | :---: | :---: |
| | Positive | |

Remarks:

1. This 2 by 2 table shows the pairing (and the raw data).
2. If the sensitivity of the two diagnostic tests are equally good, we expect (approx.) the same counts in the "upper right" and "lower left" cells.

Which statistical method with paired binary data?

- For p-value computation, we often use a McNemar's test
- Modern software can compute an "exact" version of the McNemar's test.
- An exact confidence interval can be computed for each of the two compared specificities (as seen in the first slides of the lecture) ${ }^{24}$

Which R code and conclusions?

library (exact2x2)
tab <- rbind $(c(1,19), c(2,2))$
mcnemar.exact(tab)
binom.test (x=sum(tab[,2]),n=sum(tab)) \# sensitivity for PCR-test (95\%-CI)
binom.test(x=sum(tab[2,]),n=sum(tab)) \# sensitivity for BC-test (95\%-CI)

Conclusions:

The sensitivity of the PCR test $(88 \%, 95 \%-\mathrm{Cl}=[68,97])$ was found significantly higher than that of the blood culture test (17%, $95 \%-\mathrm{Cl}=[5,37])$ among patients with deep-seated candidiasis (p -value <0.001).

[^0]: ${ }^{2}$ mutually exclusive.
 ${ }^{3}$ Kalani et al. Diabetes Care 26: 2575-2580, 2003

[^1]: ${ }^{6}$ whenever possible, we prefer using risk ratios or risk differences to odds ratios
 ${ }^{14 / 63}$ They are often better understood and easier to communicate!

[^2]: ${ }^{63} 7$ This method is "good enough" with "large enough" sample sizes.

[^3]: ${ }_{2066313}^{12}$ This method is "good enough" with "large enough" sample sizes.
 ${ }^{20 / 63} 13$ Recommended because: Why approximate when you can get the exact?

