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Outline

Simple pairwise comparisons
ILO: to perform pairwise comparisons and draw rational conclusions

Analysis of Variance (ANOVA): one-way
ILO: to describe the model, its parameters and assumptions
ILO: to explain why all assumptions are not all equally important
ILO: to interpret standard results

Analysis of Variance (ANOVA): two-way
ILO: to contrast one- and two-way ANOVA
ILO: to explain why all assumptions are not all equally important
ILO: to interpret standard results
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Case: Irritable Bowel Syndrome Dose Response

I Data from n = 198 women.

I Randmomized (double-blind) to:
I Placebo (n = 50, “dose 0”)
I Dose 1 (n = 54)
I Dose 2 (n = 49)
I Dose 3 (n = 45)

(Doses are blinded for confidentiality)

Outcome: baseline adjusted abdominal pain score at end of follow-up (12
weeks), approximately continuous variable, the larger the better.

Research questions:
I Does the drug work?
I Are there differences between doses?
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Outcome data
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0 0.22 0.72 50
1 0.43 0.88 54
2 0.51 0.71 49
3 0.62 0.71 45
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Pairwise Welch’s t-test: results
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Dose 0 1 2
1 0.19
2 0.04 0.59
3 0.01 0.24 0.48

Have we not reported all relevant results? What is left to worry about?

Note: the y-axis has changed!
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Interpretations (1/3)

Results include:
I Dose 0 not significantly different from dose 1.
I Dose 1 not significantly different from dose 2.
I But dose 0 significantly different from dose 2.

Are the results self-contradicting?

I No! This is just due to statistical uncertainty because of “small”
sample sizes.

I Again, “Absence of evidence is not evidence of absence” (see e.g. Altman &

Bland (1995). BMJ, 311(7003), 485)

I Dose 1 may have a similar effect to either dose 0 or dose 2.

6 / 58



u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f b i o s t a t i s t i c s

Interpretations (1/3)

Results include:
I Dose 0 not significantly different from dose 1.
I Dose 1 not significantly different from dose 2.
I But dose 0 significantly different from dose 2.

Are the results self-contradicting?
I No! This is just due to statistical uncertainty because of “small”

sample sizes.
I Again, “Absence of evidence is not evidence of absence” (see e.g. Altman &

Bland (1995). BMJ, 311(7003), 485)

I Dose 1 may have a similar effect to either dose 0 or dose 2.

6 / 58



u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f b i o s t a t i s t i c s

Interpretations (2/3)

What about the assumptions? Can we trust the results?
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I QQplots for doses 0, 1, 2 look good but not so good for dose 3.
I However nothing “very” bad and decent sample size

(≥ 45 per group), so it seems fine.
7 / 58



u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f b i o s t a t i s t i c s

Interpretations (3/3)
Beware of the multiple testing issue!
We are trying to answer the same question “Are there differences between
doses?” using six hypothesis tests. If we find a difference between any two
doses, we want to conclude that “there are differences between doses”. The
reasonoing is good, except for the fact that the risk of making at least one false
conclusion that two different doses lead to different mean outcome is ≥ 5%.
Hence we do not control the risk of falsely concluding that “there are
differences between doses” at 5%.

How bad
can this be?

Number of groups compared
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Indepedent comparisons (non−realistic, 'worse case')
Same sample size and sd in all compared groups
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What statistical method should we use?

We want to control the FWER1at 5%.

Using Bonferroni? No.
It’s a conservative (i.e. sub-optimal) approach which ignores the (strong)
correlation between the comparisons (as may comparisons use data from the same groups, e.g. 0 vs 1 and

0 vs 2 both use data for dose 0)

More modern alternative? Yes.
Use specific method and software for multiple correction that do not
make any additional assumptions.2 The details of the method and
computation are more complicated3 but not the interpretation and
user-friendly software exist.

1Family-wise error rate (FWER): probability of making one or more false discoveries when performing multiple hypotheses tests
(Lecture 2).

2Although, strictly speaking, they rely on “minor” large sample size approximations.
3That is why the method are still “new” and underused.
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Recommended analysis (see R-demo for code)

Statistical methods:
Comparisons between groups were made with a heteroscedastic ANOVA model (not
assuming equal variances). P-values and 95% confidence intervals were adjusted for
multiple testing using the max-t test method (aka min-p method) as implemented in
the multcomp-package [ref.4] of the statistical software R [ref.5] and described in
[ref.6].

Results (adjusted for multiple testing):

Comparison Est. Diff 95% CI p-value
1 - 0 0.209 [-0.202; 0.620] 0.552
2 - 0 0.293 [-0.083; 0.670] 0.185
3 - 0 0.398 [ 0.011; 0.784] 0.041
2 - 1 0.084 [-0.325; 0.494] 0.951
3 - 1 0.189 [-0.230; 0.607] 0.647
3 - 2 0.104 [-0.281; 0.489] 0.896

Note: p-values ≤ 6 times the non-adjusted ones (Bonferroni).

4Hothorn, Bretz & Westfall (2008). Simultaneous Inference in General Parametric Models. Biometrical Journal 50(3), 346–363.
5R Core Team (2024). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna,

Austria. URL https://www.R-project.org/.
6Herberich, Sikorski & Hothorn. "A robust procedure for comparing multiple means under heteroscedasticity in unbalanced designs."

PloS one 5.3 (2010): e9788.
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Why the “min-p” name? Which interpretation?

I To answer “Yes!” to the research question “Are there differences between
doses?”, it is sufficient to show that there is a difference between any two
of the doses. Hence one significant adjusted p-value is enough evidence.

I Obviously, we have at least one significant p-value if the minimum of all
the adjusted p-values is significant.

I This means that the p-value corresponding to the null the global null
hypothesis

H0 : "the mean response is the same for all doses"

can simply to be computed as the minimum of the adjusted p-values
computed for all the pairwise comparisons.

I Note: “minimum p-value” is equivalent to “maximum t-statistic”. Hence
the two equivalent names “min-p” or “max-t” for the method.

Conclusion for our case: we found a statistically significant association
between the dose of medication and the mean response (p=0.041).
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What if we want only the comparisons to placebo?

Sometimes we only want all the comparisons to one (reference) group.

This is known as the many-to-one comparisons case (Dunnett), by
contrast to the all pairwise comparisons case (Tukey).7

The method for this case is similar and we can use the same software.

Case results (adjusted for multiple comparisons to placebo):

Comparison Est. Diff 95% CI p-value
1 - 0 0.209 [-0.168; 0.586] 0.418
2 - 0 0.293 [-0.052; 0.639] 0.115
3 - 0 0.398 [ 0.043; 0.752] 0.023

Note: p-values ≤ 3 times the non-adjusted ones (Bonferroni).

7Dunnett & Tukey were among the first statisticians who proposed specific, powerful, methods for these specific cases.
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Pre-specification matters

The same comparison, e.g. Dose 3 versus Placebo (Dose 0), leads to the
estimated mean difference 0.398, but different 95% confidence intervals (CI)
and p-values (after adjusting for multiple testing) when we consider either:

I All-pairwise (6) comparisons: 95% CI=[0.011; 0.784], p= 0.041.
I Many-to-one (3) comparisons: 95% CI=[0.043; 0.752], p= 0.023.

Take home messages:
I The more comparisons the wider the 95% CI and the higher the p-values.
I Do not investigate more comparisons than interesting/possible (power ↓).
I The choice of investigating “all-pairwise” versus “many-to-one”

comparisons should be done before seeing the data, i.e. pre-specified.
Rigorously adjusting for multiple testing is not possible otherwise and how
much we can trust the results without pre-specification is most unclear.
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Digression: prespecified vs post hoc analyses

It is completely fine and often useful to performed post hoc8 analyses as
long as:
I they are reported as such in publications9,
I conclusions based on them are not too strong.

“The main analyses should concentrate on the primary research questions to reduce
the amount of testing of data-generated hypotheses. However, science would not
proceed if analyses of questions not stated in the protocol were not allowed so,
obviously, new ideas generated from the data can be pursued as long as conclusions
based on such additional analyses are suitably calibrated.”10

8A post hoc analysis is an analysis specified after the data were seen.
9Otherwise this is “data fishing”, “data snooping” or “p-hacking” and this is considered as

something in between “questionable research practice” and “scientific dishonesty and research
misconduct”; see KU course “Responsible Conduct of Research”.

10Andersen & Skovgaard, Regression with linear predictors , page 473 (Springer, 2010).
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Power and sample size calculation

When planning several comparisons, say K, with a FWER control at α ,
one can:

1. Define an adjusted type-I error α′ = α/K.
2. Perform sample size and power calculation for each comparison as in

the case of a unique comparison, using this adjusted type-I error α′
as input of the formula instead of α.

Note: this is a “slightly” conservative approach11.

11This is because this simple calculation assumes that the (less powerful) Bonferroni correction will be used.
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Outline

Simple pairwise comparisons
ILO: to perform pairwise comparisons and draw rational conclusions

Analysis of Variance (ANOVA): one-way
ILO: to describe the model, its parameters and assumptions
ILO: to explain why all assumptions are not all equally important
ILO: to interpret standard results

Analysis of Variance (ANOVA): two-way
ILO: to contrast one- and two-way ANOVA
ILO: to explain why all assumptions are not all equally important
ILO: to interpret standard results
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What is ANOVA about?

ANOVA stands for “ANalysis Of VAriance”, but this is a method to
compare means (via the comparisons of variances.).

Useful for answering research questions such as:
I Is this continuous outcome associated with this categorical variable?
I Is the mean outcome the same for all levels of this categorical

outcome?

Examples:
I Outcome: weight, blood pressure, concentration, pain score ...
I Categorical variable: BMI group, age group, dose level ...

This is a very commonly used, well-known and “old” method.
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ANOVA model (one-way)
The j-th observation from the i-th group is described as:

Yij = µi + εij

I µi is the (population) mean for group i.
I εij ’s are individual ’error’ terms (“random/unexplained deviation

from the mean”) assumed normally distributed with zero mean and
the same variance σ2

ε regardless of group.12

Model assumptions (1-2 important, 3-4 not always):
1. Observations from different groups are independent.
2. Individual observations within each group are independent.
3. ’Error’ terms are normally distributed.
4. The variance of ’error’ terms is the same for all groups (homogeneity).

12
εij refects “general differences between subjects [...] as well as sometimes differences from occasion to occasion within

subjects, since, although we are only assuming that we measure a given subject once, this is often only one of many occasions on
which we might have measured the subject” (Senn, Statist. Med. 2004; 23:3729–3753).
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Visual interpretation (Yij = µi + εij , hypothetical data)
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I σε tells us how vertically spread are the points above and below
each group mean µi, for each group.19 / 58
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ANOVA (one-way): why and how?

Why using a “traditional” ANOVA analysis, aka an “F-test”?
To test the global null hypothesis “H0: The mean of all (K) groups are
all equal”, that is

H0 : µ1 = µ2 = · · · = µK .

How does it work?
By using a F-test which compares the between-group variability to the
within-group variability. If the between-group variability is large enough
relative to the within-group variability, then we reject H0.

I Hence the name ANOVA: we analyze variances
I Computation possible by hand, hence the method became popular

during the pre-computer age.
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ANOVA: intuition of the F-test (hypothetical data)
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I Left: the between-group variance (i.e. the variance of sample means x̄i) is
small relative to the within-group variability: do not reject H0.

I right: the between-group variance is large relative to the within-group
variability: reject H0.

Note: of course “small”/”large” is also relative to the sample size.
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Case: “traditional” ANOVA analysis, aka F-test

I x̄0 = 0.22
I x̄1 = 0.43
I x̄2 = 0.51
I x̄3 = 0.62
I σ̂ε = 0.76
I p-value=0.07
I Do not reject!
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This is not consistent with the results
from the all-pairwise comparisons (seen in the first slides)...
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Case: similar F-test, but without assuming homogeneity
Let’s use a more flexible model, which does not require assumption 4
(homogeneity).

I x̄1 = 0.22, σ̂1 = 0.72
I x̄2 = 0.43, σ̂2 = 0.88
I x̄3 = 0.51, σ̂3 = 0.71
I x̄4 = 0.62, σ̂4 = 0.71
I p-value=0.055
I Do not reject!
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Still not consistent with the results from the all-pairwise comparisons...
although the modeling assumptions are similar ! (only the hypothesis test method is different)23 / 58
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Critics of the F-test and recommendations (1/2)

I When the F-test is significant we can conclude to differences between the
groups but we do not know between which groups! (frustrating....).
Historically, people used to proceed in two steps: 1) test the global null
H0 : µ1 = µ2 = · · · = µK , 2) if H0 is rejected, proceed to make pairwise
comparisons, but why not directly start with pairwise comparisons,
especially because...

I F-test and pairwise comparisons are inconsistent: either may find a
significant difference the other doesn’t. When it happens it is frustrating
and hard to explain.

I When the F-test is not significant it is difficult to know whether it is due
to lack of effect or lack of evidence, because there are no corresponding
confidence intervals.
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Critics of the F-test and recommendations (2/2)

Recommendations:
I Unless you are not interested in the pairwise comparisons or have

another specific reason in mind (e.g. power), prefer the all-pairwise
comparisons and min-p (aka max-t) approach to the F-test.

I If you are not interested in the pairwise comparisons but only in
knowing whether a continuous outcome is associated with a
categorical, and if you want to keep the analysis as “simple and
common” as possible, then you may prefer the F-test to the more
“modern” min-p approach.
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Appendix: Power of F-test vs all-pairwise comparisons

We can test the global null hypothesis H0 : µ1 = µ2 = · · · = µK using:
I F-test.
I min-p test (aka max-t test): perform all-pairwise comparisons and

compute the p-value for H0 as the minimum of the multiplicity
adjusted p-values of all the comparisons (hence the “min-p” name).
The rational is that we can safely reject H0 if there is at least one
significant difference after adjusting for multiple testing.

Which approach is the most powerful?
I F-test when the means of all groups are different although there is

no particularly large difference between any two groups.
I “min-p test” when there exists a particularly large difference between

two of the groups.
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Checking the ANOVA model assumptions
The F-test and ANOVA model are still very much used. What should we
know about checking their modeling assumptions?

I Assumptions 1-2 (independence):
I rely on the study design.

I Assumptions 3 (homogeneity of variances):
I check with residual plots or compute sd in each group (best).
I can be relaxed if needed (see R-demo for code).
I log-transforming the data might help to obtain homogeneity of the

variances. 13

I Assumptions 4 (normality):
I check with qqplot.
I not needed with large sample sizes in each group.14

13 It should ideally be prespecified. If not, this is a posthoc analysis.
14As for the t-test, for the same reason: the central limit theorem.
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Case: model checking “default” plots
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Notes:
I These plots are similar to those used to check the linear models (see Lecture 3).
I The ’default’ left plot does not use “jitter”, which substantially

complicates the interpretation... Comparing the numerical values of the
SD in each group can be informative (and this is simple to do)
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ANOVA: usual software parametrization (1/4)

R code for ANOVA

fitlm <- lm(resp~dosefact, data=d)
summary(fitlm)

which returns (among other things)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.2213 0.1079 2.051 0.0416 *
dosefact1 0.2091 0.1498 1.396 0.1643
dosefact2 0.2935 0.1534 1.913 0.0572 .
dosefact3 0.3977 0.1568 2.537 0.0120 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.7631 on 194 degrees of freedom
Multiple R-squared: 0.03513,Adjusted R-squared: 0.02021
F-statistic: 2.354 on 3 and 194 DF, p-value: 0.07335
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ANOVA: usual software parametrization (2/4)
I (Intercept): est. mean in the reference group: x̄0 = 0.2213.
I dosefact1: est. mean difference: x̄1 − x̄0 = 0.2091.
I dosefact2: est. mean difference: x̄2 − x̄0 = 0.2935.
I dosefact3: est. mean difference: x̄3 − x̄0 = 0.3977.

I F-statistic: provides F-test p-value: 0.07335.
I Residual standard error: estimate of σε: 0.7631

I p-values for the mean differences are not adjusted for multiple
testing.

I “default” summary presents only comparisons between the reference
group and others (3 out of 6 possible). This is arbitrary!

I Note that if Dose 1 had been chosen as the reference group,
among the 3 differences shown in the output none would be
significant.
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ANOVA: usual software parametrization (3/4)

R code for ANOVA when the reference Dose is now Dose 1.

d$dosefact <- relevel(d$dosefact,ref="1")
fitlm <- lm(resp~dosefact, data=d)
summary(fitlm)

which returns (among other things)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.4304 0.1038 4.145 5.08e-05 ***
dosefact0 -0.2091 0.1498 -1.396 0.164
dosefact2 0.0844 0.1505 0.561 0.576
dosefact3 0.1887 0.1540 1.225 0.222
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.7631 on 194 degrees of freedom
Multiple R-squared: 0.03513,Adjusted R-squared: 0.02021
F-statistic: 2.354 on 3 and 194 DF, p-value: 0.07335
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ANOVA: usual software parametrization (4/4)

The ANOVA model is actually a specific kind of linear model. 15 The
mean of each group is described by the regression formula:

µi = α+ β1 · I(groupi=Dose 1) + β2 · I(groupi=Dose 2)
+ β3 · I(groupi=Dose 3)

where I() is the indicator function:

I(condition) =
{

1, if condition is true
0, if condition is false

Group Dose 0 Dose 1 Dose 2 Dose 3
Mean α α+ β1 α+ β2 α+ β3
Estimate 0.2213 0.2213 + 0.2091 0.2213 + 0.2935 0.2213 +0.3977

15more on linear model in Lecture 7; it explains the use of the lm function in R.
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Outline

Simple pairwise comparisons
ILO: to perform pairwise comparisons and draw rational conclusions

Analysis of Variance (ANOVA): one-way
ILO: to describe the model, its parameters and assumptions
ILO: to explain why all assumptions are not all equally important
ILO: to interpret standard results

Analysis of Variance (ANOVA): two-way
ILO: to contrast one- and two-way ANOVA
ILO: to explain why all assumptions are not all equally important
ILO: to interpret standard results
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Two-way ANOVA

What is it about?
Analysis the mean of a continuous outcome depending on two categorical
variables.

Why and when is it useful?
1. to increase power and precision of the estimates.
2. to correct/adjust for differences between the groups that we

primarily aim to compare (e.g. to adjust for baseline differences; to
get closer to “causal” conclusions 16).

3. to (sometimes) better handle missing data.

Note: points 2 and 3 are closely related.17

16More on Lecture 7.
17Essentially, missing data are problematic when they make the the groups that we compare “different”, i.e., not comparable .
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Case: weight gains in rats

I Data from n = 40 rats, fed on four diets.

I Two amounts of protein (low and high)
I Two sources of protein (beef and cereal)
I Randomized, Factorial, Balanced

experiment.

Outcome: weight gain in grams.

Research question: Does one of the two sources of proteins lead to larger
weight gains (in average)?
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Simple comparison: t-test

I x̄1 = 89.6, σ̂1=17.7
I x̄2 = 84.9, σ̂2=15.0

I p-value of t-test=0.37
I Difference in mean 4.70,

95% CI = [-5.81;15.21]
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Note: crosses show the means.
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The data
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Adjusting increases power & precision

Theory (maths) shows that
adjusting on a variable
(strongly) associated with the
outcome will generally increase
the power of the analysis and
the precision of the estimates
(i.e. smaller s.e., narrower CI).

To get the intuition, let’s
imagine this hypothetical
situation...
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Unfolding the four groups (hypothetical) (1/3)
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Unfolding the four groups (hypothetical) (2/3)
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Unfolding the four groups (hypothetical) (3/3)
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I Some evidence in each subgroup (High and Low)
I The evidence of each subgroup is based on less subjects

(↘ n⇒↘ evidence/power) but based on data with less variability
(↘ σ ⇒↗ evidence/power), which somehow “balances out”.

I So, overall there is more evidence (i.e. smaller s.e. and more power).
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The two-way ANOVA model (without interaction)

The k-th observation from the (i, j)-th combination group (e.g. source
of protein i and amount of protein j) is described as:

Yijk = µij + εijk

= γi + ηj + εijk (assuming no interaction).

I µij = γi + ηj is the mean for the (i, j)-th combination group.

I εijk’s are individual ’error’ terms (“random/unexplained deviation
from the mean”) assumed normally distributed with zero mean and
the same variance σ2

ε regardless of group.
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Two-way ANOVA assumptions (without interaction)

Model assumptions (1-4 similar to that of the one-way ANOVA):

1. Observations from different groups are independent.
2. Individual observations within each group are independent.
3. ’Error’ terms are normally distributed.
4. The variance of ’error’ terms is the same for all groups (homogeneity).
5. There is no interaction (→).

Note: 1-2 and 5 are important18, 3-4 not always (as for the one-way ANOVA)..

18Actually assumption 5 is not very important in the specific case of a randomized and “well balanced” experiment, when correctly
interpreting the results as “marginal” differences in means.
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The meaning of “no interaction” (1/2)
No interaction models µij = γi + ηj for the mean for the (i, j)-th combination group.
In our example that means that:

The
{

source
amount

}
of protein “shifts” the mean of all

{
amounts
sources

}
(up or down) in

the same way.

Example (hypothetical):
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Source / Amount of protein

W
ei

gh
t g

ai
n 

(g
)

50
60

70
80

90
10

0
11

0
12

0

Beef / High Beef / Low Cereal / High Cereal / Low

Different differences= interaction

44 / 58



u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f b i o s t a t i s t i c s

The meaning of “no interaction” (2/2)
No interaction models µij = γi + ηj for the mean for the (i, j)-th combination group.
In our example that means that:
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of protein “shifts” the mean of all
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amounts
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}
(up or down) in

the same way.
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Two-way ANOVA: usual software parametrization (1/4)

Now we come back to the real data and run the analysis!

One-way ANOVA (for comparison)

OneWayRes <- lm(weightgain~source,data=weightgain)
summary(OneWayRes)

which returns

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 89.600 3.669 24.419 <2e-16 ***
sourceCereal -4.700 5.189 -0.906 0.371
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 16.41 on 38 degrees of freedom
Multiple R-squared: 0.02113,Adjusted R-squared: -0.004628
F-statistic: 0.8203 on 1 and 38 DF, p-value: 0.3708
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Two-way ANOVA: usual software parametrization (2/4)
Two-way ANOVA

TwoWayRes <- lm(weightgain~type+source,data=weightgain)
summary(TwoWayRes)

which returns

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 95.300 4.255 22.396 <2e-16 ***
typeLow -11.400 4.914 -2.320 0.026 *
sourceCereal -4.700 4.914 -0.957 0.345
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 15.54 on 37 degrees of freedom
Multiple R-squared: 0.1455,Adjusted R-squared: 0.09926
F-statistic: 3.149 on 2 and 37 DF, p-value: 0.05459

Note:
I Variable type in the data weightgain indicates the amount of protein.
I F-test p-value is not so interesting here (H0: “neither effect of amount of protein nor of

source of protein”).
I Same estimated difference (-4.70) as in the one-way ANOVA because of the balanced

factorial design.
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Two-way ANOVA: usual software parametrization (3/4)

I (Intercept): est. mean in the reference group (High,Beef).

I typeLow: est. mean difference between amount (type) of protein, Low vs
High, for the same source of protein (any).

I sourceCereal: est. mean difference between sources of protein, Cereal vs
Beef, for the same amount (type) of protein (any).

I F-statistic: not so interesting (see previous slide).

I Residual standard error: estimate of σε: 15.54
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Digression
In this example, the s.e. for the difference of interest is unfortunately only “a
little bit” smaller with the two-way ANOVA than with the one-way ANOVA
(4.914 vs 5.189). This is because the vertical spread of the observations of the
weight gains (i.e. the standard deviation) is not largely different when looking
at the entire data or within subgroups.
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(plot of the real data)
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Two-way ANOVA: usual software parametrization (4/4)

This ANOVA model is also a specific kind of linear model. The mean of
each group is given by this regression formula:

µij = α+ β1 · I(amountj=Low) + β2 · I(sourcei=Cereal)

Modeled means and estimates:

Source
Amount High Low

Beef α α+ β1
95.3 95.3 + (−11.4) = 83.9

Cereal α+ β2 α+ β1 + β2
95.3 + (−4.7) = 90.6 95.3 + (−4.7) + (−11.4) = 79.2
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What if we compare more than two groups?

I In short, everything is very similar to what we have seen before.

I For illustration, let’s artificially create additional data of 20 more
observations from rats fed with Fish (again, 10 receive a Low
amount of protein, 10 a High amount).
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Two-way ANOVA (results with additional, artificial, data)

Two-way ANOVA

TwoWayRes <- lm(weightgain~type+source,data=weightgain)
summary(TwoWayRes)

which returns

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 95.250 3.786 25.157 <2e-16 ***
typeLow -11.300 3.786 -2.984 0.0042 **
sourceCereal -4.700 4.637 -1.014 0.3152
sourceFish -10.050 4.637 -2.167 0.0345 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 14.66 on 56 degrees of freedom
Multiple R-squared: 0.1955,Adjusted R-squared: 0.1524
F-statistic: 4.537 on 3 and 56 DF, p-value: 0.006454
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F-test with two-way ANOVA

An F-test can be performed for the null hypothesis H0 : β2 = β3 = 0 ,
with model formula

µij = α+ β1 · I(amountj=Low) + β2 · I(sourcei=Cereal) + β3 · I(sourcei=Fish)

that is

H0: “All sources of proteins give the same average weight gain,
when comparing rats fed with the same amount of protein”.

It compares the mean weight gain from all sources of proteins “adjusted”
on the amount of protein received (i.e. within groups of rats receiving the
same amount of proteins).

I This is a very commonly used, well-known and “old” method.
I Pros and cons: similar to that of F-test for one-way ANOVA.
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R code and results

R code for the F-test (two-way ANOVA)

Full.lm <- lm(weightgain~type+source, data=weightgain) # "full" model (same as TwoWayRes)
Cons.lm <- lm(weightgain~type, data=weightgain) # "constrained" model
anova(Cons.lm,Full.lm) # F-test (compares the 2 models)

which returns

Analysis of Variance Table

Model 1: weightgain ~ type
Model 2: weightgain ~ type + source

Res.Df RSS Df Sum of Sq F Pr(>F)
1 58 13054
2 56 12042 2 1011.4 2.3517 0.1045

Comments:
I F-test p-value=0.1045 is not significant.
I To avoid coding mistakes and misunderstandings of the R output, compare

the two models and do not instead use “anova(Full.lm)”, since the
order of the variables in the formula would generally matter in that case.
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Recommended analysis (see R-demo for code)

Statistical methods:
Comparisons between sources of proteins were made using a two-way ANOVA model
(without interaction), to adjust for the amount of proteins received. P-values and 95%
confidence intervals were adjusted for multiple testing using the max-t test method
(aka min-p method) as implemented in the multcomp-package [ref.19] of R [ref.20]
and described in [ref.21].

Results (adjusted for multiple testing):

Comparison Est. Diff 95% CI p-value
Cereal - Beef -4.7 [-15.9; 6.5] 0.572
Fish - Beef -10.1 [-21.2; 1.1] 0.086

Fish - Cereal -5.4 [-16.5; 5.8] 0.486

We did not find a statistically significant association between the source of proteins
and the mean weight gain (p=0.086).
Notes:

I p-values ≤ 3 times the non-adjusted ones obtained from the default summary (Bonferroni).
I results for comparisons, including “Fish - Cereal” (unlike in default summary)

19Hothorn, Bretz & Westfall (2008). Simultaneous Inference in General Parametric Models. Biometrical Journal 50(3), 346–363.
20R Core Team (2024). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna,

Austria. URL https://www.R-project.org/.
21Bretz, Hothorn, & Westfall (2016). Multiple comparisons using R. CRC Press.
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About assuming “no interaction”

I This assumption can be important.
I It simplifies the interpretation of the results.
I It should be supported by subject-matter knowledge.
I This assumption can (most often) be checked with the data.
I Usually, the smaller the sample size the more assumptions we need

to compensate. This applies to the assumption of no interaction.

I More on interactions in Lecture 7.
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Model checking (default) plots
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Note: these are similar plots to those of the linear models.
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(A few) Take home messages
I ANOVA is useful to compare the mean outcome in several groups.

I One-way: one categorical variable used in the analysis, Two-way: two
categorical variables.

I A two-way ANOVA can be better than a one-way ANOVA (gain in power
and precision), but not necessarily (more assumptions are required) .

I Pairwise comparisons are often relevant, but adjusting for multiple testing
is necessary to control the risk of false discoveries.

I F-tests are often used, sometimes useful, but not always.

I All model assumptions are not equally important.

I Think about your research question first, then choose your statistical
method (one- or two-way ANOVA, F-test, pairwise comparisons, which
multiple testing adjustment: none, all-pairwise, many-to-one?)

I Check the main modeling assumptions, tune your conclusions
appropriately.

58 / 58


	Simple pairwise comparisons
	Analysis of Variance (ANOVA): one-way
	Analysis of Variance (ANOVA): two-way

