Outline/Intended Learning Outcome (ILOs)

Hypothesis testing

ILO: to describe the principles and logic of hypothesis testing

Day 2: Hypothesis testing, tests for
continuous responses, multiple testing

Paul Blanche
Section of Biostatistics, University of Copenhagen

One and two sample tests for continuous responses: t-test
ILO: to identify when, how and why to use a t-tes

Power and Sample size calculation
ILO: to identify why and how to make power and sample size calculations

Multiple testing

Nonparametric test: Wilcoxon
ILO: to contrast pros and cons of Wilcoxon vs t-tes 2/61

Research question and Null hypothesis

- A hypothesis test aims to answer a very precise \& specific research question.

Case: Is there a difference in (population) mean level of protein between cows fed with lupin and barley, at 12 weeks?

- The null hypothesis \mathcal{H}_{0} of the test should reflect it and state the opposite of what you aim to prove.
- Scientific hypothesis: there is a difference.
- Null hypothesis: there is no difference.

Choosing the opposite is important to appropriately control the risk of wrong conclusion.

[^0]Hypothesis testing and risks of false conclusions

Case:

- Type-I error: conclude a difference although it does not exist.
\rightarrow False positive finding
- Type-II error: do not conclude to a difference although it exists.
\rightarrow False negative finding

The logic of hypothesis testing

1. Assume that the data have been generated in a world in which the null hypothesis is true.
2. Under this assumption, calculate how unlikely it is to obtain some results that contradict the null hypothesis as least as much as those obtained with your data (i.e., compute the p-value).
3. Reject the null hypothesis if this is unlikely 'enough'.

- Similar to a proof by contradiction.
- Computation in step 2. depends on the type of observed data.

Hypothesis testing and risk control

We want to ensure that the risk of wrongly rejecting the null hypothesis (α) is small (often 5%), i.e. a small risk of a false scientific finding.

Reasoning: the data need to be convincing enough to support the (new) research finding.

Limitation: it might be difficult to have enough data to support a (new) finding (\rightarrow power).

Outline/Intended Learning Outcome (ILOs)

Hypothesis testing

One and two sample tests for continuous responses: t-test
ILO: to identify when, how and why to use a t-test
ILO: to define a p-value and contrast its use with that of a confidence interval
Power and Sample size calculation
ILO: to identify why and how to make power and sample size calculations
ILO: to analyse their strengths and limitations

Case: cow milk data

Data from $n=25$ (Barley) +27 (Lupin) cows:

```
protein Diet
    3.28 lupins
    3.04 barley
    3.07 barley
    2.92 barley
    3.29 lupins
    3.18 lupins
etc...
```



```
3.18 lupins etc...
```

- Is the difference observed in the data sample large enough to conclude to a difference in the population?

A better approach

Compute

- p-value for the difference in mean.
- confidence interval for the difference in mean.

First approach (not optimal for testing)

- Lupin: [3.11;3.32]
- Barley: [3.30;3.56]

We cannot conclude on the significance of the difference
(see slides lecture 1).
But the two Cl can be interesting to report anyway.

10/61

- Barley
- Lupin

Two-sample t-test ($1 / 2$)
Model assumptions: (1 \& 2 are important, 3 not always)

1. The two samples are independent (no pairing).
2. Observations from each sample are independent.
3. Observations are normally distributed.

To test the null hypothesis $\mathcal{H}_{0}: \mu_{1}=\mu_{2}$, i.e. the population means are the same in the two populations, we compute the t-statistic.

$$
t=\frac{\bar{x}_{1}-\bar{x}_{2}}{\text { s.e. }\left(\bar{x}_{1}-\bar{x}_{2}\right)}
$$

where the standard error is s.e. $\left(\bar{x}_{1}-\bar{x}_{2}\right)=\sqrt{s_{1}^{2} / n_{1}+s_{2}^{2} / n_{2}}$.
The value t quantifies how large the (sample) difference $\left(\bar{x}_{1}-\bar{x}_{2}\right)$ is relative to the amount of information provided by the data $\left(\right.$ s.e. $\left(\bar{x}_{1}-\bar{x}_{2}\right)$) and is used to compute a p-value.
${ }_{12 / 61}$

Appendix: t-statistic intuition (1/3)

- For given standard deviations s_{1} and s_{2} and sample sizes n_{1} and n_{2}, the larger the difference in mean $\bar{x}_{1}-\bar{x}_{2}$ and the larger the t-statistic (absolute values).

$\rightarrow 1$ sense: the right p in mean than the left plot.

Appendix: t-statistic intuition (2/3)

- For given standard deviations s_{1} and s_{2} and difference in mean $\bar{x}_{1}-\bar{x}_{2}$, the larger the sample sizes n_{1} and n_{2} and the larger the t-statistic (absolute values).

- It makes sense: the right plot is more convincing that there is a differen in mean than the left plot.

Appendix: t-statistic intuition (3/3)

- For given difference in mean $\bar{x}_{1}-\bar{x}_{2}$ and sample sizes n_{1} and n_{2}, the smaller the standard deviations s_{1} and s_{2} and the larger the t -statistic (absolute values).

Two-sample t-test (2/2)

The key idea to use the t-statistics is that under the model assumption, it follows a specific distribution ${ }^{2}$ whatever the value of the (population) means $\left(\mu_{1}, \mu_{2}\right)$ and standard deviations $\left(\sigma_{1}, \sigma_{2}\right)$ in each group.

Hence we can assume $\mu_{1}=\mu_{2}$ and calculate how unlikely it is to obtain a t value that contradicts the null hypothesis as least as much as that obtained with your data, that is, we can compute a p-value.

The larger $|t|$ the more the data contradict $\mathcal{H}_{0}: \mu_{1}=\mu_{2}$.
p -value $=\mathrm{P}(|T|>|t|)$, where T is a random variable that follows the t-distribution.

- It makes sense: the right plot is more convincing than there is a differe in mean than the left plot.

[^1] $166(6)$
sizes n_{1} and n_{2}, already encountered in Lecture 1 .

The p-value (1/2)

Informal definition:

The p-value is "the probability of seeing a result as extreme as your observed result, when the null model is true." ${ }^{3}$

- "result" $=$ test statistic, i.e., a single value that ("cleverly") summarizes the data.
- "extreme" = unlikely/unexpected.

Interpretation:

1. If the \mathbf{p}-value is small the data are at odds with the null hypothesis and the finding is said to be statistically significant.
2. If the p-value is large, the finding is said to be not statistically significant.

The p-value (2/2)

Interpretation:

3. We imagine a large number of repetitions of the study with the null hypothesis being true and define the p-value as the proportion of these studies which provide less support for the null hypothesis than the data actually observed.

Recommendations:

- Traditionally the value $\mathrm{p}=5 \%$ has been used to divide "significant" from "non-significant" results, but good practice is to report the actual p-value.
- The choice of the threshold to claim significance (e.g., $p=5 \%$) should be prespecified.

Case: Two-sample t-test

- $\bar{x}_{1}=3.43, \bar{x}_{2}=3.21$
- $\bar{x}_{1}-\bar{x}_{2}=0.22$
- $n_{1}=25, n_{2}=27$
- $s_{1}=0.31, s_{2}=0.27$
- s.e. $\left(\bar{x}_{1}-\bar{x}_{2}\right)=0.081$
- $t=2.66$
- p-value $=\mathrm{P}(|T|>|t|)=0.011$

We conclude that there is a significant difference in mean protein level of the milk between cows fed with barley and lupin ($p=0.011$).

Don't misinterpret p-values!

Widespread misunderstandings called for clarifications:

- The p-value is not the probability of \mathcal{H}_{0} being true.
"Researchers often wish to turn a p-value into a statement about the truth of a null hypothesis, or about the probability that random chance produced the observed data. The p-value is neither." ${ }^{\prime 4}$ This is because $P\left(\right.$ extreme result $\left.\mid \mathcal{H}_{0}\right) \neq P\left(\mathcal{H}_{0} \mid\right.$ extreme result $)$.

Don't misinterpret p-values!

Widespread misunderstandings called for clarifications:

- The p-value is not the probability of \mathcal{H}_{0} being true.
"Researchers often wish to turn a p-value into a statement about the truth of a null hypothesis, or about the probability that random chance produced the observed data. The p-value is neither." ${ }^{\prime 4}$ This is because $P\left(\right.$ extreme result $\left.\mid \mathcal{H}_{0}\right) \neq P\left(\mathcal{H}_{0} \mid\right.$ extreme result $)$.
- Observing a p -value $\leq 5 \%$ does not mean that the positive finding is easy to reproduce! ${ }^{5}$
As an example, suppose you conduct a study and find a significant p-value of $p=5 \%$. You try to replicate your positive finding by conducting the exact same study again. What is your chance to get a significant p-value $(<5 \%)$ again? To calculate that, you need to know yo true treatment effect " $\mu_{1}-\mu_{2}$ ", which you do not know, of course. But what about if we assume that it is what you have estimated in your (first) study, i.e. $\bar{x}_{1}-\bar{x}_{0}$?

Don't misinterpret p-values!

Widespread misunderstandings called for clarifications:

- The p -value is not the probability of \mathcal{H}_{0} being true.
"Researchers often wish to turn a p-value into a statement about the truth of a null hypothesis, or about the probability that random chance produced the observed data. The p-value is neither." ${ }^{4}$ This is because $P\left(\right.$ extreme result $\left.\mid \mathcal{H}_{0}\right) \neq P\left(\mathcal{H}_{0} \mid\right.$ extreme result $)$.
- Observing a p-value $\leq 5 \%$ does not mean that the positive finding is easy to reproduce! ${ }^{5}$

As an example, suppose you conduct a study and find a significant p -value of $p=5 \%$. You try to replicate your positive finding by conducting the exact same study again. What is
your chance to get a significant p-value ($\leq 5 \%$) again? To calculate that, you need to know the true treatment effect " $\mu_{1}-\mu_{2}$ ", which you do not know, of course. But what about if we assume that it is what you have estimated in your (first) study, i.e. $\bar{x}_{1}-\bar{x}_{0}$? Only 50% !

Normality assumption

Normality should be checked for each sample separately (using histograms or qqplots).

But, when sample sizes n_{1} and n_{2} are both large enough (say >15) normality is not important ${ }^{6}$.
However, skewed data can be transformed to facilitate the interpretation and reduce the influence of outliers (this should be pre-specifified).
${ }^{61}{ }^{6}$ due to the central limit theorem

Confidence interval of the difference

Good practice: report an estimate of the mean difference and a 95\% confidence interval.

$$
\bar{x}_{1}-\bar{x}_{2} \pm t_{d f} \cdot s . e .\left(\bar{x}_{1}-\bar{x}_{2}\right)
$$

- df: degree of freedom $\approx n_{1}+n_{2}-2$ when $n_{1}=n_{2}$ and $s_{1}=s_{2}$.
- $t_{d f} \approx 1.96$ when n_{1} and n_{2} are large (say ≥ 15).
- software will take care.

Confidence interval vs p-value

- if 0 is $\left\{\begin{array}{c}\text { in } \\ \text { not in }\end{array}\right\}$ the Cl , then the difference $\left\{\begin{array}{c}\text { is not } \\ \text { is }\end{array}\right\}$ significant.
- We can tell if the test is significant from looking at the CI, but we can't guess the Cl from knowing the p -value.

Case: mean difference of -0.22 (CI-95\% $=[0.05 ; 0.38] ;$ p-value $=0.011$.

Confidence interval vs p-value

- if 0 is $\left\{\begin{array}{c}\text { in } \\ \text { not in }\end{array}\right\}$ the CI , then the difference $\left\{\begin{array}{c}\text { is not } \\ \text { is }\end{array}\right\}$ significant.
- We can tell if the test is significant from looking at the CI , but we can't guess the Cl from knowing the p-value.
- A wide 95% that includes 0 suggests "lack/absence of evidence".
- A narrow 95% that includes 0 suggests "evidence of absence" of difference (or existence of a "tiny one", if any).

Difference in mean

Appendix: Need for Cls (1/2)

p -Values are only one tool for assessing evidence. When reporting the results of a clinical trial, CIs should always be reported to identify effect sizes that can be "ruled out" (i.e., effect sizes that are inconsistent with the data). If a p -value is significant, implying an effect, then the next natural question is "what is the effect?" CIs directly address this question. If a p-value is not significant, implying that you were not able to rule out the possibility of "no effect," then the next natural question is "what effects could be ruled out?"

CIs again directly address this question. The under-reporting of CIs is a serious flaw in the medical literature.
CIs are not a replacement for p -values but instead should be provided with p-values. p-values are still very useful tools particularly when assessing trends and interactions.

[^2]-

Appendix: Need for Cls (2/2)

Appendix: Cls for evidence of "clinical equivalence"

E.g.: $\Delta=5 \mathrm{mmHg}$ in blood pressure

Figure 2: Confidence interval approach to analysis of equivalence trial.

EMA scientific guidelines "Points to consider on switching between superiority and non-inferiority" (2000),
https://www.ema. europa.eu/en/documents/scientific- guideline/
points-consider-switching-between-superiority-and-non-inferiority_en.pdf

EMA scientific guidelines "Points to consider on switching between superiority and non-inferiority" (2000), https://www. ema.europa.eu/en/documents/scientific-guideline/

26/61
points-consider-switching-between-superiority-and-non-inferiority_en.pdf

27/61

Appendix: Cls for evidence of "clinical non-inferiority"

E.g.: $\Delta=5 \mathrm{mmHg}$ in blood pressure

Figure 3: Confidence interval approach to analysis of non-inferiority trial
-

Two versions of the two-sample t-test

"Classical" Student's t-test (not recommended):

- Original t-test, described in many basic textbooks.
- Additional assumption ${ }^{7}$ of equal standard deviations $\sigma_{1}=\sigma_{2}$.
- Different formula for s.e. and degrees of freedom ($d f=n_{1}+n_{2}-2$).

Welch's t-test (the presented one, recommended):

- No assumption of equal standard deviations: less restrictive.
- Formula for degrees of freedom more complicated, but software take care.
- Default in R.

One-sample example

Research question

Is the mean protein level of the milk similar at 1 and 12 weeks after calving, for cows fed with Barley?

Data $\left(t_{1}-t_{12}\right)$:

Cow	Diff
B01	-0.08
B02	-0.03
B03	1.06
B04	0.48
B05	0.49
B06	0.74

Null hypothesis:
B01 -0.08
B02 -0.03
B03 1.06
$004 \quad 0.48$

B06 0.74
The mean difference between protein level
at 1 and 12 weeks is zero $\left(\mathcal{H}_{0}: \mu=0\right)$
One-sample test because only one group of ($n=25$) cows (barley).

One-sample t-test

The t-test statistic measures the distance between the sample mean and the assumed population mean μ under \mathcal{H}_{0} in units of the standard error:

$$
t=\frac{\bar{x}-\mu}{s / \sqrt{n}}
$$

If $|t|$ is large, the data "contradict" the null hypothesis

$$
\mathrm{p} \text {-value }=\mathrm{P}(|T|>|t|)
$$

where T is a random variable that follows the t -distribution with $n-1$ degrees of freedom.

- similar to the computation of the confidence intervals for the mean
- p-value $<5 \% \quad \Longleftrightarrow \mu$ not in 95% Cl.

One-sample t-test: example results

- $\bar{x}=0.46$
- $n=25$
- $s=0.31$
- $t=7.43$

- p-value $=\mathrm{P}(|T|>|t|)<0.001$ (for $\left.\mathcal{H}_{0}: \mu=0\right)$

We conclude that there is a significant difference in mean protein level of the milk at 1 and 12 weeks after calving, for cows fed with barley ($p<0.001$)

Reminder (see Lecture 1):

we compute the $95 \% \mathrm{Cl}$ as $\bar{x} \pm t_{n-1} \cdot s / \sqrt{n}$, which here leads to [0.33;0.58] (and does not inlclude 0).

Note: this one-sample t-test corresponds to a paired t-test ${ }^{8}$

Outline/Intended Learning Outcome (ILOs)

Hypothesis testing

One and two sample tests for continuous responses: t-test
ILO: to identify when, how and why to use a t-test

Power and Sample size calculation
ILO: to identify why and how to make power and sample size calculations
ILO: to analyse their strengths and limitations

Multiple testing

ILO: to describe the multiple testine problem and emplov basic remedies

Nonparametric test: Wilcoxon
\qquad
${ }^{1} 8_{\text {two samples of observations (two times) paired by cow. More on Lecture } 8 .} 8$.
ILO: to contrast pros and cons of Wilcoxon vs t-tes
${ }^{33} / 61$

Power

The power of a test is the chance of obtaining a significant result when the null hypothesis is indeed false.

Power

The power of a test is the chance of obtaining a significant result when the null hypothesis is indeed false.

- Power $=1-\beta$, i.e. 1 minus the risk of a "false negative" result (β), i.e. 1 minus risk of Type-II error.
- Although we can control the type-I error $(\alpha=5 \%)$ by appropriately computing the p -value and comparing it to 5%, the computation does not control the risk of type-II error, β.
- The power of a two-sample t-test depends on:
\Rightarrow sample sizes n_{1} and n_{2} (the larger the better).
standard deviations σ_{1} and σ_{2} (i.e. variability, the smaller the better).
$>$ difference in mean $\delta=\left|\mu_{1}-\mu_{2}\right|$ (i.e. effect size, the larger the better).

Textbook power formula (approximation for two-sample t-test)

$$
\delta=\left(z_{1-\beta}-z_{\alpha / 2}\right) \sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}
$$

- $z_{\alpha / 2}=-1.96$ for $\alpha=5 \% .^{9}$
- $z_{1-\beta}=0.84$ and 1.28 for $1-\beta=80 \%$ and 90%.
- maximal power when $n_{1}=n_{2}$, for a given total sample size $n_{1}+n_{2}$, when $\sigma_{1}=\sigma_{2}$.

Useful for computing:

- Sample size: $n_{1}=n_{2}$ for given "guesses" of σ_{1}, σ_{2} and δ and desired $1-\beta$ and α.
- Power for a given budget/sample size: $1-\beta$ for "guesses" of σ_{1}, σ_{2} and δ and desired n_{1}, n_{2} and α.
- Least detectable difference: δ for given n_{1} and n_{2}, "guesses" of σ_{1} and σ_{2} and desired α and minimal power $1-\beta$.
${ }^{35 / 61} 9$ where z_{γ} is the $\gamma-$ quantile of a standard normal distribution.
- $n_{1}=n_{2}=64$ subjects needed to detect $1 / 2$ sd difference ${ }^{11}$.

Use a software! (e.g. R)

Often it is "good enough" to assume $\sigma_{1}=\sigma_{2}$ and then sensible to choose $n_{1}=n_{2}$. Then standard software can be used, e.g. with R^{10} :
power.t.test(power $=.80$, delta $=0.5$)
Two-sample t test power calculation
$\mathrm{n}=63.76576$
delta $=0.5$
sd $=1$
sig.level $=0.05$
power $=0.8$
alternative = two.sided
NOTE: n is number in *each* group

[^3]
Sample size calculation: which difference δ to use?

Principled choices:

- expected/hypothesized difference.
- minimum (clinically) relevant difference.

But small difference are difficult to detect and may require a large sample size, with consequences on the budget, study length, etc.

Pragmatic choice: smallest difference "disappointing" to overlook.

If this still indicates a too large sample size, then discuss with your supervisor (try to avoid wasting time/money).

Which guesses for the standard deviations?

For the calculations, we need a "guess" for the variability in the outcome 12, i.e. σ_{1}, σ_{2}.

- Estimate from previous studies from your research group or published in the literature (be aware of statistical uncertainty).
- Expert guess (supervisor/senior collaborators).

Recommended practice:

- use several likely values to do several calculations.
- see how changes affect the results and discuss with your collaborators.
- be conservative (when appropriate).
- consider ethical issues (when appropriate).
${ }^{3 \times / 6 / 12}$ Thinking about the normal range width $(=4 \sigma)$ ean help to guess σ.

Power: sensitivity to σ

Example: an initial calculation suggests $n=74$ (i.e. 37 per group), for the minimum difference $\delta=2$ that we aim to show, with our best expert guess $\sigma=3$ (with 80% power). But what does the power become if we over or underestimate σ by up to 50% ?
power.t.test(sd=4, delta=2, $\mathrm{n}=37$)
Two-sample t test power calculation
$\begin{aligned} n & =37 \\ \text { delta } & =2\end{aligned}$
$\begin{aligned} \text { delta } & =2 \\ \text { sd } & =4\end{aligned}$
sig.level $=0.05$
power $=0.5642987$
alternative $=$ two.sided
NOTE: n is number in *each* group

Note: textbook formula gives $\delta=2.8 \cdot \sigma \cdot \sqrt{2 / 20}$
${ }_{39} / 61$

Outline/Intended Learning Outcome (ILOs)

Hypothesis testing
ILO: to describe the principles and logic of hypothesis testing
One and two sample tests for continuous responses: t-test
ILO: to identify when, how and why to use a t-test
ILO: to define a p-value and contrast its use with that of a confidence interval
Power and Sample size calculation
ILO: to identify why and how to make power and sample size calculations
ILO: to analyse their streng th and limitations

Multiple testing
ILO: to describe the multiple testing problem and employ basic remedies

Nonparametric test: Wilcoxon
A multiple testing example

ILO: to contrast pros and cons of Wilcoxon vs t-test

Are jelly beans associated with acne?

- First test is not significant.
- Move on to other tests.
- Five more tests are not significant.
- Move on to other tests.

\bullet

- Four more tests are not significant, but one is significant (Green!).
- Move on to other tests.
 BEIGE JELYY BEANS PND ACNE ($P>0.05$).

WE FOUNONO WE FOOND NO
LINK BETWEEN ORANGE JEUY BEANS PND AONE ($P>0.05$). '

- Five more tests are not significant.
- Stop testing.

FWER in the example

We have computed $K=16$ different p -values. For simplicity, we assume that the data to compute each of them are different (independent).

$$
\begin{aligned}
\text { FWER } & =\mathrm{P}(\text { at least one of the } K \text { p-values are significant }) \\
& =1-\mathrm{P}(\text { none of the } K \text { p-values are significant }) \\
& =1-\mathrm{P}(1 \text { st is not significant }) \times \cdots \times \mathrm{P}(K \text {-th is not significant }) \\
& =1-(1-0.05) \times \cdots \times(1-0.05) \quad \text { (as no association exists) } \\
& =1-(1-0.05)^{K}
\end{aligned}
$$

FWER control

When we plan to compute $K \geq 1 \mathrm{p}$-values, we can adjust their computation to control the FWER.

Bonferroni adjustment

- adjusted p -value $=K \times$ original p -value
- adjusted significance level $=\alpha / K .{ }^{13}$

K	1	2	3	4	5	10	$\mathbf{1 6}$	20	50
FWER (\%)	5	10	14	18	23	40	$\mathbf{5 6}$	64	92

Cartoon: 56% chance of at least one significant false finding if no association exists.

[^4]feartmen

FWER control

When we plan to compute $K \geq 1 \mathrm{p}$-values, we can adjust their computation to control the FWER.

Bonferroni adjustment:

- adjusted p -value $=K \times$ original p -value
- adjusted significance level $=\alpha / K .{ }^{13}$

Intuition:

- equally share/split the original significance level α between the tests.
- the "total" risk of error (FWER) cannot exceed the sum of the errors of each test.

Remarks:

- always works: no specific assumption.
- but only works if we prespecify the analysis with K tests. ${ }^{14}$

[^5]
Prespecification matters

Concluding significance without prespecification is like drawing a dart-board around where the dart lands.

Bonferroni-Holm adjusted p-values

1. sort the p-values: $p_{(1)} \leq p_{(2)} \leq \cdots \leq p_{(K)}$
2. adjust the first as with Bonferroni, i.e. $\tilde{p}_{(1)}=K \cdot p_{(1)}$ and others as

$$
\tilde{p}_{(i)}=\max \left\{\tilde{p}_{(i-1)},(K-i+1) \cdot p_{(i)}\right\}
$$

(\approx multiply the 1st by K, the 2nd by $K-1$, the 3 rd by $K-2, \ldots \ldots$)

Remarks:

- same as for Bonferroni.
- we cannot compute corresponding adjusted significance levels and adjusted confidence intervals.
- less conservative than Bonferroni, i.e. adjusted p-values are always smaller.

FWER vs FDR (1/2)

Controlling the FWER is important in "confirmatory" studies.

- When there is a clear prespecified scientific hypothesis and the aim is to "prove" it. E.g. clinical trial.

Controlling the FDR is often better suited in "exploratory" studies.

- When nice data are available, but no specific research questions / scientific hypotheses. You want to look at many associations and report findings which are "likely enough" true findings. E.g. Genomics.

Note: we "truncate" the p-value to 1.

Comparison	60 mg	50 mg	40 mg	30 mg	20 mg	10 mg
Original p-value	$\mathbf{0 . 0 0 5}$	$\mathbf{0 . 0 0 9}$	0.1	0.15	0.3	0.6
Bonferroni	$\mathbf{0 . 0 3}$	0.054	0.6	0.9	1	1
Bonferroni-Holm	$\mathbf{0 . 0 3}$	$\mathbf{0 . 0 4 5}$	0.4	0.45	0.6	0.6

Example

We compare 6 doses of treatments $(10-60 \mathrm{mg})$ to placebo $(0 \mathrm{mg})$.

FWER vs FDR (2/2)

Hypotheses	Not rejected	Rejected	Total
True	U	V	K_{0}
False	T	S	$K-K_{0}$
Total	W	R	K

WR $=\mathrm{P}(V>0)$

- $F D R=\mathrm{E}(V / R) \quad$ (where here we set $V / R=0$ if $R=0$).
- controlling the FDR is less conservative than controlling the FWER: p-values adjusted to control the FDR are smaller than those adjusted to control the FWER.
- See Benjamini-Hochberg (1995) method to control FDR at e.g. 5\%.

Outline/Intended Learning Outcome (ILOs)

Hypothesis testing
ILO: to describe the principles and logic of hypothesis testing

One and two sample tests for continuous responses: t-test
ILO: to identify when, how and why to use a t-test
ILO: to define a p-value and contrast its use with that of a confidence interval

Power and Sample size calculation
ILO: to identify why and how to make power and sample size calculations
IIO: to analyse their strengths and limitations

Multiple testing

Nonparametric test: Wilcoxon
ILO: to contrast pros and cons of Wilcoxon vs t-test

57/61

Wilcoxon-Mann-Whitney Test: motivation

Limitation of the two-sample t-test

- Data should be normally distributed in each group
- OR the sample size of each group should be large.

Challenge:

What if we want a reliable computation of a p-value to compare two groups, with small sample data not necessarily normally distributed?

A solution:

We can use a rank-based test ${ }^{16}$: the Wilcoxon-Mann-Whitney test ${ }^{17}$. It provides "exact" p-values. ${ }^{18}$

Another advantage of Wilcoxon is its "robustness" to outliers, which might be convenient.

[^6]
Case: gene expression

- Research question:

Is the length of the candidate gene NACP associated with the level of expressed alpha synuclein mRNA, which has been shown to be associated with alcoholism?

- Outcome: level of expressed alpha synuclein mRNA.
- Compared groups: "short" vs "long" allele

length (sum score built foom additive dinucleofide repeet length categrized into groups).

Challenges:

- small sample size $n=24$ (short) +15 (long)
- outcome not known to be normally distributed.
- aim to confirm that this gene is linked to alcohol dependence.

Wilcoxon test: example
p-value $=0.002$

Wilcoxon test: practical limitation

When a significant difference is shown we can conclude that the distribution in the two groups are different, but nothing else.. which can be frustrating.

Common error/overinterpretation: conclude to a difference in median.
We cannot estimate a nice matching $95 \% \mathrm{Cl}$ to quantify the "effect size". By contrast, to complement the p-value of a t -test we can provide a matching $95 \% \mathrm{Cl}$ of the difference in mean.

Hence unless an "exact" p-value computation is really needed, using a t -test, possibly after having transformed the data, can often be preferred ${ }^{19}$. randomly drawn blue observation should be larger than a randomly
8 Observation in about 50% of the draws. (Here $P(X>Y)=79.2 \%$)

[^0]: size. It will be emphasized shortly

[^1]: ${ }^{2}$ the t-distribution aka Student's distribution, which depends on the two sampl

[^2]: Fundamental Concepts for New Clinical Trialists", by Evans and Ting (2016), pages 216-217, Section 8.3.4.2 "Need for Cls

[^3]: ${ }^{10}$ slightly more precise calculation performed than using the textbook formula.
 ${ }^{11}$ Note: it holds for whatever $\sigma_{1}=\sigma_{2}$ and δ, as long as δ / σ_{1}, the "signal-to-noise ratio",

[^4]: ${ }^{13}$ Can be used to compute adjusted confidence intervals
 ${ }^{14}$ Not allowed to keep testing until one significant result pops up and then ${ }^{50 / 61}$ multiply all p-values by the number of tests performed.

[^5]: ${ }^{13}$ Can be used to compute adjusted confidence intervals.
 ${ }^{14} \mathrm{Not}$ allowed to keep testing until one significant result pops up and then
 multiply all p-values by the number of tests performed.

[^6]: ${ }^{16}$ also often called "non-parametric" test
 ${ }^{17}$ sometimes just called "Wilcoxon" or "Mann-Whitney" test.
 ${ }^{88 / 618}$ exact means that p-values are always valid (i.e. no "large n " approximation.)

