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Disclaimer

“The readers are strongly encouraged encouraged to seek out and
collaborate with statisticians with survival analysis expertise when
considering time-to-event endpoints in their research.”1

I Today’s ILOs are ambitious but still, if you need to analyze survival data during
your PhD, we encourage you to collaborate with a (competent) statistician
and/or to follow the specific PhD course on this topic (7 full days).

I Today’s topics are important to all as we will talk about the two most commonly
used statistical methods in medical research: Kaplan-Meier and Cox regression2

1Le-Rademacher & Wang (2021). Time-to-event data: an overview and analysis considerations. Journal of Thoracic Oncology,
16(7), 1067-1074.

2According to citation impact, see. e.g. Van Noorden and Nuzzo (Nature News, 2014), in which the papers by Kaplan-Meier and
Cox rank 11 and 24 in the ranking of the most most-cited research papers of all time.
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Outline/Intended Learning Outcomes (ILOs)

Survival Data
ILO: to recognize survival data and list contexts in which we meet them
ILO: to define censoring and explain the challenges it creates
ILO: to distinguish censoring from a competing risk

Simple & common analyses: possibilities and pitfalls
ILO: to perform a Kaplan-Meier analysis and a log-rank test
ILO: to fit and interpret a Cox model
ILO: to list the main limitations of the Cox model
ILO: to perform a Restricted Mean Survival Time (RMST) analysis
ILO: to exemplify the difference between a risk ratio and a hazard ratio
ILO: to recognize and avoid immortal time bias

Competing risks
ILO: to exemplify competing risks data
ILO: to describe a very common mistake
ILO: to employ a basic (but appropriate!) method for competing risks data
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What are time to event (survival) data?

“In many medical studies an outcome of interest is the time to an event.
Such events may be adverse, such as death or recurrence of a tumour;
positive, such as conception or discharge from hospital; or neutral, such
as cessation of breast feeding. It is conventional to talk about survival
data and survival analysis, regardless of the nature of the event.” 3

3Altman & Bland (1998). Time to event (survival) data. BMJ, 317(7156), 468-469.
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What are censoring & censored data?

“The distinguishing feature of survival data is that at the end of the
follow up period the event will probably not have occurred for all
patients. For these patients the survival time is said to be censored,
indicating that the observation period was cut off before the event
occurred. We do not know when (or, indeed, whether) the patient will
experience the event, only that he or she has not done so by the end of
the observation period.” 4

4Altman & Bland (1998). Time to event (survival) data. BMJ, 317(7156), 468-469.
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Staggered entry & study end lead to censored data

Calendar time

Study starts Enrollment stops Study ends

Patient  1

Patient  2

Patient  3

Patient  4

Patient  5

Patient  6

Patient  7

Event Censored

I often subjects enter the study during an accrual period, when e.g. they
start a treatment, are diagnosed with something or undergo surgery;

I and are followed until a specific date, when follow-up ends.
I Those event-free at the end of follow-up are censored. We only know that

the time to event is larger than the observed time from date of enrollment
to date of end of follow-up.
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From “calendar time” to “study time” (1/2)

Calendar time

Study starts Enrollment stops Study ends

Patient  1

Patient  2

Patient  3

Patient  4

Patient  5

Patient  6

Patient  7

Event Censored

I Censored observations can happen at different “study times”,
because subjects entered the trial at different dates.
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From “calendar time” vs to “study time” (2/2)

Study time (i.e. time from enrollment)

Enrollment Max. follow−up time

Patient  1

Patient  2

Patient  3

Patient  4

Patient  5

Patient  6

Patient  7

Event Censored

I Censored observations can happen at different “study times”,
because subjects entered the trial at different dates.
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Dropout and censoring (1/2)

Calendar time

Study starts Enrollment stops Study ends

Patient  1

Patient  2

Patient  3

Patient  4

Patient  5

Patient  6

Patient  7

Event Censored

Often, some patients “drop out” or are “lost to follow-up” before the study ends (e.g.
patients 2 and 6 here), e.g. because they:

I move to another region / hospital
I do no longer show up to biweekly follow-up visits (e.g. assume that the event is

50% decline in CD4 cell count from baseline or a positive drug test; here the
time unit is half a week).

This results in no follow-up data after the dropout date, hence the time to the event
of interest (e.g. death) is censored at that time.9 / 69
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Dropout and censoring (2/2)
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Definitions of time zero and event matter!
When talking about survival data and survival analysis, the time “zero”
and the event of interest should always be clearly defined.

Examples of time “zero”:
I start of treatment or randomization
I diagnosis (e.g. of cancer, diabetes)
I birth

Examples of events:
I death
I diagnosis (e.g. of cancer, diabetes)
I major adverse cardiovascular events (MACE), e.g. death, myocardial

infarction or stroke.
I death or cancer progression (progression-free survival)

The two last are “composite endpoints”.
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Censoring 6= competing risk !

Composite endpoints are popular because traditional/simple analyzes
assume that there is no competing risks, which means that nothing else
than the restricted follow-up (i.e. censoring) prevents us from observing
the event of interest.

This is not the case if we study events such as “stroke”
or “cancer progression”, or non-fatal events among
elderly people, because some subjects die without
experiencing those.

Note: some competing risks are not a problem because they are so rare
that they are irrelevant. E.g., if we study time to pregnancy within 2
years, it seems safe to ignore the competing risk of death.
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Case: pregnancy in subfertile women
Data, n=38:

time status
4 0
4 1
9 1
2 1
1 1

24 0

The usual censored
survival data format!

Outcome:
I time: time in months (menstrual cycles) since laparoscopy
I status: pregnancy (1) or no pregnancy by the end of the follow-up (0)

Research aim: estimate/describe the proportion women not pregnant yet, by
any given time after laparoscopy.

Reference: Bland, J. M., & Altman, D. G. (1998). Survival probabilities (the Kaplan-Meier method). Bmj, 317(7172), 1572-1580.
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Censored data: the challenge!
Data
ordered by
time, n=38:
id time status
---------------
1 1 1
2 1 1
3 1 1
4 1 1
5 1 1
6 1 1
---------------
7 2 1
8 2 1
9 2 0
10 2 1
11 2 1
12 2 1
---------------
13 3 1
14 3 1
15 3 0
16 3 1
---------------
17 4 0

What is the estimated probability of a woman not being
pregnant yet 1 month after laparoscopy?

I Easy! 1− 6/38 = 84%

And 2 months after laparoscopy?
I Easy! 1− 11/38 = 71%

And 3 months after laparoscopy?
I Not easy! We don’t know whether woman number 9

became pregnant during the third month. But we do
know that she was not pregnant yet at the end of the
second month... How should we use this “incomplete”,
but not “completely missing”, information?
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Outline/Intended Learning Outcomes (ILOs)

Survival Data
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Kaplan-Meier: main idea

Data
ordered by
time, n=38:
id time status
---------------
1 1 1
2 1 1
3 1 1
4 1 1
5 1 1
6 1 1
---------------
7 2 1
8 2 1
9 2 0
10 2 1
11 2 1
12 2 1
---------------
13 3 1
14 3 1
15 3 0
16 3 1
---------------
17 4 0
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I I

I

I

I

38 38 32 26 4 2Subjects at risk

1 − 6/38 = 84% (no censoring problem)

1− 11/38 = 71% (no censoring  problem)

71% x (1 − 3 / { 38 − 11 − 1} ) = 63%  :  take care of censoring!

P̂ (T > 3) = P̂ (T > 3|T > 2)︸ ︷︷ ︸
=1−3/26

× P̂ (T > 2)︸ ︷︷ ︸
=71%

= 63%

Here P̂ (T > 3|T > 2) = 1− 3/26 because at the third month we observe
3 pregnancies among the 26 women for whom we can observe a
pregnancy. These women are called women “at risk”. Note that 26 (at
risk) = 38 (all) - 11 (already pregnant) - 1 (already lost to follow-up).
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Kaplan-Meier: main assumption (our case, 1/2)

To be valid, the computation requires that the women lost to follow-up
by any time point are not different from those who remain in the study.
In other words, the “at risk” women need to be representative of all those
who have not experienced the event yet.

This means that the women lost to follow-up should have the same
chances of becoming pregnant that those who remain in the study.

I Realistic if e.g. loss of follow-up is due to study end and staggered
entries (especially if the accrual period is short).

I Not realistic if e.g. loss of follow-up is due to women dropping out
because they have received a new diagnosis of infertility that
discourages them from further trying to become pregnant.
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Kaplan-Meier: main assumption (in general, 2/2)

The “exact” definition and meaning of independent censoring is complex.

But, the concept and interpretation of independent right censoring is
essentially that among those who are still alive, additional information of
being uncensored should provide no further insight into the future risk of
event.5

5See e.g. Andersen, P. K., & Keiding, N. (2012). Statistics in Medicine, 31(11-12), 1074-1088.
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Typical KM plot (same pregnancy data)
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38 26 18 14 6 4 3 2 2 2 2Subjects: 

I 95% CI, “ticks” to display the censored times, N. of subjects at risk.
I Does not go down to 0 when the largest observed time is a censored

observation (i.e., status=0).
I Plot stops where there is no longer subjects at risk (here 24 months)
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KM plot Interpretation
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I The survival probability at t=5 months is estimated to be 54% (95%-CI=
[38%;70%]).

I Similar results can be read for any time.
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Median survival time
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I The median survival time is a parameter often meaningful to estimate; its
interpretation is that half of the time to events are shorter.

I The median survival time is estimated to be 6 months (95%-CI= [3;10]).
I Here, we estimate that half of the women become pregnant within 6 months

after laparoscopy (95%-CI= [3;10]).21 / 69
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Case: carcinoma randomized clinical trial data

Data, n = 100 + 95 (experimental + standard):

time status trt
1 631 1 1
2 270 1 0
3 327 1 1
4 243 1 1
5 916 1 0
6 1823 0 0

Research question: Does an experimental treatment of carcinoma of the
oropharynx, which combines radiotherapy and chemotherapy, improve
survival chances, as compared to standard radiotherapy treatment?

Reference/source: Kalbfleisch and Prentice, The statistical analysis of failure time data, 2002, Appendix II.
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Which null hypothesis?
We need to be specific about what we mean, when we aim to compare
“survival chances”. Two simple and common approaches and their
corresponding null hypothesis (H0) are:

I Comparison at a specific time point t, e.g., t=2 years.

H0 : S1(t) = S2(t) ,

meaning that the survival chances at t years are the same. For the
interpretation, this is similar to the 2x2 table case of Lecture 5.
→ the choice of t should be prespecified and justified.

I Comparison of the survival curves “overall”.

H0 : S1(t) = S2(t) for all time t,

meaning that the survival curves are the same (everywhere). Often useful
when we expect than one curve is above the other, i.e. S1(t) > S2(t) for
all time t.
→ most common choice, for which a log-rank test6 is useful.

6See e.g. Bland & Altman. "The logrank test." (2004) BMJ 328(7447), 1073.
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Pointwise comparison at t = 2 years

Time (years)
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I

I

N. of subjects at risk:
95 49 20 11 4Standard

100 62 36 11 6Experimental

I In each group:

38.0% (95%-CI=[28.3, 47.6]) versus 28.0% (95%-CI=[18.6, 37.4])

I The survival difference is 10.0% (95%-CI=[-3.5, 23.4], p-value=0.146)
I See R-demo for computation.
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Log-rank test to compare the survival curves
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I The p-value of the log-rank test is p=0.336. We do not reject the null
hypothesis that the survival curves are the same in the two treatment
groups.

I See R-demo for computation.
I But can we provide a matching 95%-CI of an effect size? (see next slides)
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Log-rank test to compare the survival curves
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Hazard function (aka hazard rate function)

The log-rank test actually compares the survival curves in each group via
the comparison of the hazard functions.

The hazard function is: λ(t) = lim
dt→ 0

P (t ≤ T < t+ dt |T ≥ t)/dt.

Informally, for any (very) short time duration dt, the hazard λ(t)
multiplied by this small duration dt is the probability of death before time
t+ dt, given that a subject has survived until time t.

Knowing the hazard function is equivalent to knowing the survival
function, as S(t) = exp

(
−
∫ t

0 λ(u)du
)
, which explains why comparing

the hazard functions is equivalent to comparing the survival curves.
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Why using hazards?
Numerous statistical methods and concepts in survival analysis rely on the
hazard function. This is because censoring is “easily” accounted for when
estimating the hazard function, e.g. as in Kaplan-Meier computation.
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1 − 6/38 = 84% (no censoring problem)

1− 11/38 = 71% (no censoring  problem)

71% x (1 − 3 / { 38 − 11 − 1} ) = 63%  :  take care of censoring!

Remember from previous slide

P̂ (T > 3) = P̂ (T > 3|T > 2)× P̂ (T > 2)

and

P̂ (T > 3|T > 2) = 1−P̂ (T = 3|T > 2)

= 1− P̂ (3 ≤ T < 4|T ≥ 3)

= 1− λ̂(t)× dt

where t = 3 and dt = 1 and

λ̂(t) =
N. of events at time t

N. of subjects at risk at time t

which gives λ̂(3) = 3/26.
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Cox model and hazard ratios (univariate model)

The (univariate) Cox model is a popular model for the hazard function.

λ(t|X) = λ0(t) exp(Xβ)

I λ0(t) is called the baseline hazard function and nothing specific is
assumed about this component of the model.

I exp(β) is interpreted as a hazard ratio (HR), since

λ(t|X = x+ 1)
λ(t|X = x ) = λ0(t) exp( (x+ 1)β )

λ0(t) exp( xβ ) = exp(β)

I β = 0⇔ exp(β) = 1 means ’no effect’, i.e., that the survival curves
are the same whatever the covariate value X = x.

I
{
β < 0
β > 0

}
means

{
higher
lower

}
survival when x increases.

I An important assumption is the hazard ratio (HR) does not depend
on t. This is the so-called he proportional hazards assumption.
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Example: Cox regression, one binary variable (1/3)

Research question: Does an experimental treatment of carcinoma of the
oropharynx, which combines radiotherapy and chemotherapy, improve
survival chances, as compared to standard radiotherapy treatment?

Statistical model: we model the hazard function as

λ(t|X = x) = λ0(t) exp(βx) ,

where
x =

{
1 for experimental treatment
0 for standard treatment .
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Cox regression with one binary variable (2/3)

R code:

library(survival)
cox1 <- coxph(Surv(time,status)~trt,carcinoma)
summary(cox1)

Output:

Call:
coxph(formula = Surv(time, status) ~ trt, data = carcinoma)

n= 195, number of events= 142

coef exp(coef) se(coef) z Pr(>|z|)
trt1 -0.1622 0.8503 0.1685 -0.963 0.336

exp(coef) exp(-coef) lower .95 upper .95
trt1 0.8503 1.176 0.6111 1.183

Concordance= 0.53 (se = 0.023 )
Likelihood ratio test= 0.92 on 1 df, p=0.3
Wald test = 0.93 on 1 df, p=0.3
Score (logrank) test = 0.93 on 1 df, p=0.3
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Example: Cox regression, one binary variable (3/3)

I coef: the log of the estimated hazard ratio, β̂ = −0.1622.
I exp(coef): the hazard ratio, exp(β̂) = 0.8503.
I lower .95 and upper .95: 95% confidence interval for the hazard

ratio, 95-CI=[0.61,1.18].
I Pr(>|z|): p-value for the null hypothesis H0 : β = 0 or

equivalently H0 : exp(β) = 1 , i.e., no treatment effect. Here
p=0.336.

I the p-value is non significant and (equivalently) the confidence
interval of the hazard ratio does not include 1.

I Score (logrank) test: provide a p-value for the log-rank test, in
this specific case where there is only one categorical variable X in
the model.7

7 In theory, it should match that of the survdiff function. However, it can be slightly different, due to minor differencies in the
computation. Usually it does not matter when we round the results as appropriate, e.g. at the third digit. Note, however, that the number
of digits presented by default in this output can be too small (here only one digit!).
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How to interpret HR = 0.85?

When comparing two subjects alive after any t days since treatment
initiation (e.g. after 1, 10, 100 or 1000 days8), we estimate that the risk
of death within the next day9 is 0.85 times lower for patients treated
with the experimental treatment than for those treated with the standard
treatment. That is, we estimate that the instantaneous risk of death is
reduced by 15% (= 1− 0.85).

However, the 95% confidence interval tells us that we cannot rule out
that the instantaneous risk is reduced by as much as 39% or, on the
contrary, increased by up to 18%.

8Can be any day up to the maximum follow-up time, here 1823 days.
9Here we consider that dt =1 day is a ’small enough’ duration for interpretation.
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Simple check of the model assumption
Reminder: an important assumption is the hazard ratio (HR) does not
depend on t (proportional hazards assumption).
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For a univariate Cox model with a binary covariate, we can graphically check the ’model fit’ (and
so the single modeling assumption) by comparing the survival curves estimated by the Cox model
to those obtained via Kaplan-Meier (which makes no modeling assumptions). If the model fit is
good, the curves estimated by both approaches should be “close” (approximately, as there is some
sampling variability, as shown by 95%-CIs).33 / 69
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Hazard ratio vs Risk ratio (1/3)

We have just seen that we can correctly interpret:
I the hazard ratio (HR) as the ratio of two instantaneous risks.
I 1-HR as a relative reduction in instantaneous risk (e.g. 15%).

However, we CANNOT safely interpret:
I the hazard ratio (HR) as the ratio of two “long term” risks.
I 1-HR as a relative reduction in “long term” risk.

This is, however, a common misunderstanding. 10 The misunderstanding
might come from the fact that some researchers talk about “risks”
without clarifying whether they mean 1 day, 1 year or 10 years risks and
forget that this is not the same! Also, for historical reasons, hazard ratios
are often referred to as a “relative risks”, which is a bit confusing.

10See e.g. Sutradhar & Austin, (2018). Relative rates not relative risks: addressing a widespread misinterpretation of hazard ratios.
Annals of epidemiology, 28(1), 54-57; or Sashegyi and Ferry. "On the interpretation of the hazard ratio and communication of survival
benefit." The oncologist 22.4 (2017): 484-486.
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Hazard ratio vs Risk ratio (2/3)
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Hazard ratio = 0.6
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The relative reduction in “long term” risk can be very different from one
minus the hazard ratio (e.g. 13% vs 40%), especially when the risks are
large! 11 Here, 13% = 1− 1−0.19

1−0.06 .
11Same example in Sashegyi and Ferry. "On the interpretation of the hazard ratio and communication of survival benefit." The

oncologist 22.4 (2017): 484-486.
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Hazard ratio vs Risk ratio (3/3)
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The relative reduction in “long term” risk can be less different when the risks
are smalls.
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A limitation of hazard ratios and an alternative

When using a Cox model, we (heavily) rely on the proportional hazards
assumption.

Sometimes it does not make sense and sometimes we simply wish to use
an alternative “non-parametric” method wich does not rely on any
assumption about how the two survival curves might differ.

For instance, the proportional hazards assumption implies that the (true)
survival curves cannot cross, which might be thought as a “strong”
arbitrary assumption in some contexts.

Instead of systematically planning to report hazard ratios when
comparing two survival curves, it is now increasingly recommended to
also consider reporting differences in restricted mean survival times.12

12See e.g. Uno et al. "Moving beyond the hazard ratio in quantifying the between-group difference in survival analysis." Journal of
clinical Oncology 32.22 (2014): 2380. See also, e.g., the statistical reporting guidelines of the New England Journal of Medicine, available
from the website of the journal.
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Crossing survival curves (expected or observed)

I Is the hazard ratio meaningful to summarize the difference in
survival chances over time shown below? Very questionable...

I The difference in restricted mean survival times is an attractive
alternative

Figure 2.A in Mok et al. "Gefitinib or carboplatin–paclitaxel in pulmonary adenocarcinoma." N. Engl. J. Med. 361.10 (2009): 947-957.38 / 69
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Restricted Mean Survival Time (RMST)

Why a “restricted” mean and not a usual mean? The mean survival time could
be a good summary of the survival time distribution, but it typically cannot be
estimated well because of limited follow-up (censoring).

The RMST up to time τ , e.g. expressed in years, is simply the population
average of the amount of event-free time experienced during the initial τ years
of follow-up.

It can be estimated for any relevant time τ no larger than the largest possible
follow-up time.

If we do not observed censored observations, we can estimate the RMST by a
simple average. With censored data, we can instead estimate it by the area
under the Kaplan-Meier curve up to time τ .

The choice of time τ should be prespecified! 13

13We usually choose it close to the maximal follow-up time, but slightly smaller, to observe ’enough’ subjects at risk at time τ .
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RMST: area under the (Kaplan-Meier) survival curve
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RMST (up to 3 years)=1.43 years (95%−CI=[1.22,1.63])

The interpretation is that if we treat future patients from the study
population similarly and follow them for 3 years, the average time spent
alive would be approximately 1.43 years (95%-CI=[1.22,1.63]).
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Comparing RMSTs: example
R code:

library(survRM2)
RMSTfit <- rmst2(time=d$time/365, status=d$status, arm=d$trt, tau=tau/365)
RMSTfit

Output:

The truncation time: tau = 3 was specified.

Restricted Mean Survival Time (RMST) by arm
Est. se lower .95 upper .95

RMST (arm=1) 1.641 0.103 1.440 1.842
RMST (arm=0) 1.428 0.105 1.223 1.633

Restricted Mean Time Lost (RMTL) by arm
Est. se lower .95 upper .95

RMTL (arm=1) 1.359 0.103 1.158 1.560
RMTL (arm=0) 1.572 0.105 1.367 1.777

Between-group contrast
Est. lower .95 upper .95 p

RMST (arm=1)-(arm=0) 0.213 -0.074 0.500 0.146
RMST (arm=1)/(arm=0) 1.149 0.952 1.388 0.149
RMTL (arm=1)/(arm=0) 0.865 0.710 1.053 0.148
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Interpretation

I RMST (arm=0): we estimate that if we treat future patients from the
study population with the standard treatment (trt=0) and follow them
for 3 years, the average time spent alive would be approximately 1.43
years (95%-CI=[1.22,1.63]).

I RMST (arm=1): we estimate that if we treat future patients from the
study population with the experimental treatment (trt=1) and follow
them for 3 years, the average time spent alive would be approximately
1.64 years (95%-CI=[1.44,1.84]).

I RMST (arm=1)-(arm=0): on average, patients treated with the
experimental treatment are estimated to be alive 0.21 years (i.e. 77 days)
longer than patients treated with the standard treatment, within the 3
years following treatment initiation (95%-CI=[-0.074,0.500] years, i.e.,
[-27,183] days, p-value=0.146).

I RMTL means “restricted mean time lost” and it is computed as τ -RMST
(where here τ = 3 years).
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Example: Cox regression, one continuous variable (1/2)

Research question: Do young patients have better survival chances than
old patients (in the standard treatment group)?

Statistical model: we can model the hazard function via as

λ(t|X = x) = λ0(t) exp(βx) ,

where x represents the age of the patient at treatment initiation.
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Example: Cox regression, one continuous variable (2/2)

R code:

d0 <- d[d$trt==0,]
coxAge <- coxph(Surv(time,status)~age,data=d0)
summary(coxAge)

Output:

Call:
coxph(formula = Surv(time, status) ~ age, data = d0)

n= 95, number of events= 69

coef exp(coef) se(coef) z Pr(>|z|)
age -0.003678 0.996329 0.011640 -0.316 0.752

exp(coef) exp(-coef) lower .95 upper .95
age 0.9963 1.004 0.9739 1.019

Concordance= 0.516 (se = 0.038 )
Likelihood ratio test= 0.1 on 1 df, p=0.8
Wald test = 0.1 on 1 df, p=0.8
Score (logrank) test = 0.1 on 1 df, p=0.8
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How to interpret HR = 0.9963?

When comparing two subjects alive after any t days since treatment
initiation (e.g. after 1, 10, 100 or 1000 days14), one being one year older
than the other, we estimate that the risk of death within the next day15
is 0.9963 times lower for the older patient. That is, we estimate that the
instantaneous risk of death is reduced by 0.37%.

However, the 95% confidence interval tells us that we cannot rule out
that the instantaneous risk is reduced by as much as 2.61% or, on the
contrary, increased by up to 1.93%.

It might be clinically more relevant to report the results for e.g. a 10
years difference.

14Can be any day up to the maximum follow-up time, here 1823 days.
15Here we consider that dt =1 day is a ’small enough’ duration.
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The usual computational trick

R code:

d0$age10 <- d0$age/10
coxAge10 <- coxph(Surv(time,status)~age10,data=d0)
summary(coxAge10)

Output (partial):

coef exp(coef) se(coef) z Pr(>|z|)
age10 -0.03678 0.96389 0.11640 -0.316 0.752

exp(coef) exp(-coef) lower .95 upper .95
age10 0.9639 1.037 0.7673 1.211

Interpretation: we estimate that the instantaneous risk of death of a patient
10 years older than another (e.g. 60 versus 50) is reduced by 3.61%16

(95%-CI=[-21%,23%], p-value=0.752).

16Note: 3.61%=1-0.9639
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Important property/assumption: log-linearity
The model assumes that the hazard ratio (HR) is log-linear, that is,

λ(t|X = x+ ∆x)
λ(t|X = x ) = exp(∆xβ) = {exp(β)}∆x

for all values of x and ∆x.
This means that we assume that the HR is the same when comparing e.g.:
I age 50 and age 40 (x=40, ∆x=10)
I age 70 and age 60 (x=60, ∆x=10)

and the square root of that when comparing e.g.:
I age 45 and age 40 (x=40, ∆x=5)
I age 65 and age 60 (x=60, ∆x=5)

since
exp(0.5∆xβ) =

√
exp(∆xβ) .

Remark: one should carefully think whether this assumption makes sense, in
each specific context it is used.17 When this does not make sense, categorizing
a continuous variable is a simple solution (i.e. making age groups).

17How to best check this assumption using the data is not ’easy’ and it is beyond the scope of this introductory course.
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Example: multiple Cox regression, without interaction

Research question: Does a patient receiving the experimental treatment
have better survival chances than a patient receiving the standard
treatment, when both patients have the same age, tumor size and
disability at baseline? 18

Statistical model: we model the hazard function as

λ(t|X = x) = λ0(t) exp(β1x1 + β2x2 + β3x3 + β4x4)

where X = (X1, . . . , X4), x = (x1, . . . , x4), with x2 = age ,

x1 =
{

1 experimental trt
0 standard trt , x3 =

{
1 tumor size >4cm
0 tumor size ≤ 4cm , x4 =

{
1 disability
0 no disability .

18Here, because of randomization, this question is more or less the same as the simpler question “Does a patient receiving the
experimental treatment have better survival chances than another receiving the standard treatment?”. Indeed, due to randomization the
patients of the two groups are similar (on average). With observational data, the simpler question could be much less interesting.
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R code:

cox2 <- coxph(Surv(time,status)~trt+age+Tsize+disability, data=carcinoma)
summary(cox2)

Output (partial):

coef exp(coef) se(coef) z Pr(>|z|)
trt1 -0.0994906 0.9052984 0.1699927 -0.585 0.558
age 0.0001749 1.0001749 0.0080015 0.022 0.983
Tsize>4cm 0.1871734 1.2058364 0.2407842 0.777 0.437
disabilityYes 1.0862726 2.9632083 0.1953929 5.559 2.71e-08 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

exp(coef) exp(-coef) lower .95 upper .95
trt1 0.9053 1.1046 0.6488 1.263
age 1.0002 0.9998 0.9846 1.016
Tsize>4cm 1.2058 0.8293 0.7522 1.933
disabilityYes 2.9632 0.3375 2.0204 4.346
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Interpretation

I trt1: When comparing two subjects alive after any t days since
treatment initiation (e.g. after 1, 10, 100 or 1000 days19), we
estimate that the risk of death within the next day20 is 0.9053
times lower for patients treated with the experimental treatment
than for those treated with the standard treatment, when both
patients have the same age (whatever it is), disability (either both
are disable or both are not disable) and tumor size (either both with
tumor >4cm or both with ≤ 4cm ) . That is, we estimate that the
“adjusted” instantaneous risk of death is reduced by 9.5% (Hazard
Ratio= 0.95, 95%-CI=[1.10,0.65], p-value=0.558).

I Other lines: not related to the research question. One can still have
a similar interpretation, although it might not relate to a relevant
research question.

19Can be any day up to the maximum follow-up time, here 1823 days.
20Here we consider that dt =1 day is a ’small enough’ duration for interpretation.
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Appendix: Estimated or “predicted” curves (with pointwise 95%-CI)
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Example: two examples of two patient’s profiles, when one receives the standard
treatment, the other the experimental treatment, both aged 60, with tumor size ≤
4cm and either both are not disabled (left plot) or both are disabled (right plot).
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Independent data and “large sample” assumptions

Note that for all methods discussed today:

I We assume that the individual observations are independent. This
would probability not be realistic if e.g. we were studying the
survival times of dental sealants from patients contributing with
several observations because of several treated teeth. E.g. level of
oral hygiene or eating habits might create strong correlations...

I 95%-CI and p-value computation are based on “large sample”
approximations. They might be moderately accurate with smallish
sample sizes... Some alternative “exact” methods exist and can be
used in specific contexts (but they are not widely known/used, yet).
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Case: Stanford heart transplant program21

Data, n=103:

futime fustat transplant
1 49 1 0
2 5 1 0
3 15 1 1
4 38 1 1
5 17 1 0
6 2 1 0

Variables (many others actually available...):
I futime: time in days since acceptance into the transplantation program
I fustat: dead (1) or alive (0)
I transplant: received transplantation (1) or not (0)

Research question: Does cardiac transplantation prolong life?

21Reference: Gail. "Does cardiac transplantation prolong life? A reassessment." Annals of Internal Medicine 76.5 (1972): 815-817;
see also e.g., Moore. Applied survival analysis using R. Springer, 2016.
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Common, but WRONG analysis!

Days since acceptance into the program
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N. of subjects at risk:
34 4 2 1 1 1 1 1 0 0 0Not Transplanted
69 37 26 21 15 12 7 6 3 1 1Transplanted

What is the interpretation? Is it meaningful? What’s wrong?
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What is wrong?

We compared the survival chances of those who will be transplanted one day
(in the future), to those who will not, and showed that those who will be
transplanted one day (in the future) survive longer.

This is completely meaningless !

1. At time zero, i.e. at time of acceptance in the program, neither the
doctors nor the patient knows whether the patient will be transplanted.
So, who could ever benefit from knowing these “survival chances”? This
analysis answers an irrelevant research question!22

2. Even if the “intervention” (here transplantation) has no effect on survival,
the analysis will show that those receiving the intervention will survive
longer. Why? Just because the patients need to survive “long enough” to
receive the intervention. These patients can never be observed dead before
they receive the intervention. They are “immortal” until they receive the
intervention. This introduces a so-called “ immortal time bias”23

22 It kind of answers the questions “If I am transplanted one day what are my survival chances? And what if I am never transplanted?”
23See e.g. Suissa, S. (2008). Immortal time bias in pharmacoepidemiology. American journal of epidemiology, 167(4), 492-499.
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longer. Why? Just because the patients need to survive “long enough” to
receive the intervention. These patients can never be observed dead before
they receive the intervention. They are “immortal” until they receive the
intervention. This introduces a so-called “ immortal time bias”23

22 It kind of answers the questions “If I am transplanted one day what are my survival chances? And what if I am never transplanted?”
23See e.g. Suissa, S. (2008). Immortal time bias in pharmacoepidemiology. American journal of epidemiology, 167(4), 492-499.
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Take home message

Do not condition on the future!

I In survival analysis, define groups (and “adjust”) based on what is known
at “time zero” only.

I This might seem “obvious” today, but keep in mind that once the data
are recorded in your excel sheet or csv file or database, it is often no
longer obvious to know when e.g. a blood sample, diagnosis or claimed
prescriptions has been observed, and whether it was before or after the
start of the follow-up.

I Advanced statistical methods can sometimes help, although not always, to
analyze “time-dependent” covariates measured after the start of
follow-up. Seek help from a statistician!
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A simple, better, analysis: landmarking (sometimes meaningful, not always, 1/4)

Days since acceptance into the program
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A simple, better, analysis: landmarking (sometimes meaningful, not always, 2/4)

Days since acceptance into the program
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I Let’s look at what has happened within the first, say, 30 days. www ww
ww ww www ww www wwwww wwwww wwwwwwww wwwwwwwww
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A simple, better, analysis: landmarking (sometimes meaningful, not always, 3/4)

Days since 30 days after acceptance into the program
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I We move “time zero” from date of acceptance into the program to the
same date plus 30 days. Now the two groups that we compare are “well
defined” at new “time zero”. Note: we study those alive at 30 days only!59 / 69
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A simple, better, analysis: landmarking (sometimes meaningful, not always, 4/4)

Days since 30 days after acceptance into the program
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N. of subjects at risk:
33 15 12 9 7 4 2 2 2 1 1Not Transplanted
46 26 16 13 9 9 6 5 1 0 0Transplanted

Interpretation: a doctor meets two patients accepted in the program exactly
30 days they have been accepted into the program. One has been transplanted
within the 30 days, the other has not. The curves show the estimated
survival curves (“prognosis”) for these two patients.
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Digression: Does the statistical method matter? Yes !

Note that maybe the wrong analysis gave the right answer. But that is
not the point!

1. In practice, you do not know what is right or wrong, and that is why
analyzing the data at hand should be interesting. Hence an
obviously wrong analysis cannot be useful.

2. Even if the conclusion is correct, the claim that the data support the
conclusion cannot be correct, if the statistical analysis is incorrect.
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Outline/Intended Learning Outcomes (ILOs)

Survival Data
ILO: to recognize survival data and list contexts in which we meet them
ILO: to define censoring and explain the challenges it creates
ILO: to distinguish censoring from a competing risk

Simple & common analyses: possibilities and pitfalls
ILO: to perform a Kaplan-Meier analysis and a log-rank test
ILO: to fit and interpret a Cox model
ILO: to list the main limitations of the Cox model
ILO: to perform a Restricted Mean Survival Time (RMST) analysis
ILO: to exemplify the difference between a risk ratio and a hazard ratio
ILO: to recognize and avoid immortal time bias

Competing risks
ILO: to exemplify competing risks data
ILO: to describe a very common mistake
ILO: to employ a basic (but appropriate!) method for competing risks data
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What is a competing risks situation?

A competing risks’ situation, which is frequent in epidemiological
follow-up studies, is the situation in which the event of interest (e.g.,
stroke) does not happen for all subjects, as one or several other types of
event, called “competing events”, prevent the main event from
happening (e.g, non cardiovascular death prevents strokes, as we cannot
suffer a stroke once we are dead).

Note that censoring is different, as it only prevents the event from being
observed; it does not prevent the event from happening.

63 / 69



u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f b i o s t a t i s t i c s

Competing risks examples

At risk
(e.g. Alive at home)

Main Event
(e.g. Hospitalization)

Competing Event
(e.g. Death at home)

Other examples:
Main event Competing event
Stroke Death (without stroke before)
Cancer Death (without cancer before)
Leaving ICU24 Death (in ICU)
Weaning25 Death (before weaning)
Healing complication 26 “Normal” loss of primary teeth
Death at work Retiring
Pregnancy Stop trying or menopause

24 ICU: intensice care unit
25Among premature babies who require parenteral (intravenous) nutrition
26 in primary teeth
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Case: HF-ACTION randomized trial data 27

Data, n=377 + 364 :

time status trt
1 3.4771 0 1
2 0.7639 2 0
3 1.0897 0 0
4 0.7009 1 0
5 0.3012 1 0
6 0.3778 1 1

The usual competing risks data format!

Variables:
I time: time in years to an event or end of follow-up transplantation program
I status: type of event: (first) hospitalization (1), death (2) or censoring (0)
I trt: exercise training (1) or usual care (0)

Research question: Does exercise training, in top of usual care, lower the risk of
hospitalization among heart failure patients?

27Reference: O’Connor et al. Jama 301.14 (2009): 1439-1450. Data (subgroup) from the R package WA.
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Common, but WRONG Kaplan-Meier analysis

Unfortunately, many researchers use status=0 for both status=0 and
status=2, to be back to the usual survival data format, and then run a
Kaplan-Meier analysis. That is, they treat death as censoring. This is
fundamentally wrong.

The risks of hospitalization which are computed in that way are not
meaningful. Here they would actually estimate the risk of hospitalization
in the hypothetical world in which nobody dies without being hospitalized
first. Alternatively, we can conclude that they overestimate the true
risks.28

In short, treating a competing risk as censoring corresponds to estimate
risks in the hypothetical world in which the competing risk does not exist.
It is usually better to “stick to this world”.29

28Huebner et al. "Competing risks need to be considered in survival analysis models for cardiovascular outcomes." The Journal of
thoracic and cardiovascular surgery 153.6 (2017): 1427-1431.

29See e.g. Andersen, P. K., & Keiding, N. (2012). Statistics in Medicine, 31(11-12), 1074-1088.
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Correct analysis (1/2)

To estimate risks in a competing risks situation, we used specific
methods. We often say that we estimate the “cumulative distribution
function” or the “absolute risk” in that case. Using this “jargon”
emphasizes that we aim to properly account for competing risks.

I Instead of Kaplan-Meier, we can use the Aalen-Johansen estimator.30

I Regression models also exist. Seek help from a statistician.

30Huebner et al. "Competing risks need to be considered in survival analysis models for cardiovascular outcomes." The Journal of
thoracic and cardiovascular surgery 153.6 (2017): 1427-1431.
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Correct analysis (2/2)
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N. of subjects at risk:
377 266 212 161 127 83 58 35 18 8 0No training
364 280 220 175 132 97 65 48 32 17 1Training

No training
Training

I Estimates of the absolute risks of hospitalization obtained with the
Aalen-Johansen estimator.31

I We see that, for e.g., the 3-year absolute risks are estimated as 69.9% (95%-CI
[64.6, 75.3]) and 74.7% (95%-CI [69.7, 79.8]) with and without “training”.
This corresponds to a difference -4.8% (95%-CI [-12.1, 2.6], p=0.204).

31See R-demo for the (simple) R code.
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Reminder of today’s topics and ILOs

Survival Data
ILO: to recognize survival data and list contexts in which we meet them
ILO: to define censoring and explain the challenges it creates
ILO: to distinguish censoring from a competing risk

Simple & common analyses: possibilities and pitfalls
ILO: to perform a Kaplan-Meier analysis and a log-rank test
ILO: to fit and interpret a Cox model
ILO: to list the main limitations of the Cox model
ILO: to perform a Restricted Mean Survival Time (RMST) analysis
ILO: to exemplify the difference between a risk ratio and a hazard ratio
ILO: to recognize and avoid immortal time bias

Competing risks
ILO: to exemplify competing risks data
ILO: to describe a very common mistake
ILO: to employ a basic (but appropriate!) method for competing risks data
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