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“The readers are strongly encouraged encouraged to seek out and
collaborate with statisticians with survival analysis expertise when
considering time-to-event endpoints in their research.”™

Day 9: Survival analysis

» Today's ILOs are ambitious but still, if you need to analyze survival data during
your PhD, we encourage you to collaborate with a (competent) statistician
Paul Blanche and/or to follow the specific PhD course on this topic (7 full days).

Section of Biostatistics, University of Copenhagen
» Today's topics are important to all as we will talk about the two most commonly

used statistical methods in medical research: Kaplan-Meier and Cox regression?
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Outline/Intended Learning Outcomes (ILOs) What are time to event (survival) data?

Survival Data
ILO: to recognize survival data and list contexts in which we meet them

ILO: to define censoring and explain the challenges it creates
ILO: to distinguish censoring from a competing risk

“In many medical studies an outcome of interest is the time to an event.
Such events may be adverse, such as death or recurrence of a tumour;
positive, such as conception or discharge from hospital; or neutral, such
as cessation of breast feeding. It is conventional to talk about survival
data and survival analysis, regardless of the nature of the event.” 3
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] 3Altman & Bland (1998). Time to event (survival) data. BMJ, 317(7156), 468-469.
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What are censoring & censored data?

“The distinguishing feature of survival data is that at the end of the
follow up period the event will probably not have occurred for all
patients. For these patients the survival time is said to be censored,
indicating that the observation period was cut off before the event
occurred. We do not know when (or, indeed, whether) the patient will
experience the event, only that he or she has not done so by the end of
the observation period.” *
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4Altman & Bland (1998). Time to event (survival) data. BMJ, 317(7156), 468-469.

Staggered entry & study end lead to censored data
® Event O Censored

Patient 7

Patient 6 9

Patient 5 —e

Patient 4 e

Patient 3

Patient 2

Patient 1

f v 1
Study starts Enroliment stops Study ends

Calendar time

» often subjects enter the study during an accrual period, when e.g. they
start a treatment, are diagnosed with something or undergo surgery;

» and are followed until a specific date, when follow-up ends.

the time to event is larger than the observed time from date of enrolime

» Those event-free at the end of follow-up are censored. We only know thai
to date of end of follow-up. )
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From “calendar time” to “study time" (1/2)

® Event O Censored

Patient 7 %

Patient 6 e — ]

Patient 5 —e

Patient 4 —e

Patient 3

Patient 2

Patient 1

v v !
Study starts Enrollment stops Study ends

Calendar time

» Censored observations can happen at different “study times”,
because subjects entered the trial at different dates.
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From “calendar time” vs to “study time" (2/2)

® Event O Censored

Patient 7 ]
Patient 6 B —
Patient 5 —e
Patient 4 —e
Patient 3
Patient 2
Patient 1
[ 1
Enroliment Max. follow-up time

Study time (i.e. time from enrollment)

P Censored observations can happen at different “study times”,
because subjects entered the trial at different dates.
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Dropout and censoring (1/2)

Patient 7

Patient 6 o

Patient 5 —e

Patient 4 e

Patient 3

Patient 2 I

Patient 1

f v 1
Study starts Enrollment stops Study ends

Calendar time

Often, some patients “drop out” or are “lost to follow-up” before the study ends (e.g.
patients 2 and 6 here), e.g. because they:

»> move to another region / hospital

» do no longer show up to biweekly follow-up visits (e.g. assume that the event is
50% decline in CD4 cell count from baseline or a positive drug test; here the

time unit is half a week). @
This results in no follow-up data after the dropout date, hence the time to the eves

of interest (e.g. death) is censored at that time. o
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Definitions of time zero and event matter!

When talking about survival data and survival analysis, the time “zero”
and the event of interest should always be clearly defined.

Examples of time “zero”:
» start of treatment or randomization
» diagnosis (e.g. of cancer, diabetes)
» birth

Examples of events:
» death
» diagnosis (e.g. of cancer, diabetes)

» major adverse cardiovascular events (MACE), e.g. death, myocardial
infarction or stroke.

» death or cancer progression (progression-free survival)

The two last are “composite endpoints”. .@
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Dropout and censoring (2/2)

Patient 7 L —
Patient 6 e
Patient 5 —e
Patient 4 e
Patient 3
Patient 2 I
Patient 1 '
T 1
Enroliment Max. follow-up time

Study time (i.e. time from enrollment)
Often, some patients “drop out” or are “lost to follow-up” before the study ends (e.g.
patients 2 and 6 here), e.g. because they:
> move to another region / hospital

» do no longer show up to biweekly follow-up visits (e.g. assume that the event is
50% decline in CD4 cell count from baseline or a positive drug test: here the

time unit is half a week). @
This results in no follow-up data after the dropout date, hence the time to the eve&

ofsinterest (e.g. death) is censored at that time. °

Censoring # competing risk !

Composite endpoints are popular because traditional /simple analyzes
assume that there is no competing risks, which means that nothing else
than the restricted follow-up (i.e. censoring) prevents us from observing
the event of interest.

This is not the case if we study events such as “stroke”
or “cancer progression”, or non-fatal events among
elderly people, because some subjects die without
experiencing those.

Note: some competing risks are not a problem because they are so rare
that they are irrelevant. E.g., if we study time to pregnancy within 2

years, it seems safe to ignore the competing risk of death.

o
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Case: pregnancy in subfertile women

Data, n=38:

time status
4

BN OB
O R KPRk O

2

The usual censored

survival data format!

Outcome:

» time: time in months (menstrual cycles) since laparoscopy

> status: pregnancy (1) or no pregnancy by the end of the follow-up (0)

Research aim: estimate/describe the proportion women not pregnant yet, by
any given time after laparoscopy.

Reference: Bland, J. M., & Altman, D. G. (1998). Survival probabilities (the Kaplan-Meier method). Bmj, 317(7172), 1572-1580. @
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Censored data: the challenge!

Data
ordered by
time, n=38:

id time status

1 1 1
2 1 1
3 1 1
4 1 1
5 1 1
6 1 1
7 2 1
8 2 1
9 2 0
10 2 1
11 2 1
12 2 1
13 3 1
14 3 1
15 3 0
16 3 1
17 4 0

14/60
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What is the estimated probability of a woman not being
pregnant yet 1 month after laparoscopy?
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Censored data: the challenge!

Data
ordered by
time, n=38:

id time status
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What is the estimated probability of a woman not being
pregnant yet 1 month after laparoscopy?

» Easy! 1 —6/38 =84%

Censored data: the challenge!

Data
ordered by
time, n=38:

id time status

14/69

What is the estimated probability of a woman not being
pregnant yet 1 month after laparoscopy?

» Easy! 1 —6/38 =84%

And 2 months after laparoscopy?
» Easy! 1 —11/38 =71%
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Censored data: the challenge!

Data
ordered by
time, n=38:

id time status
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What is the estimated probability of a woman not being
pregnant yet 1 month after laparoscopy?

> Easy! 1—6/38 =84%

And 2 months after laparoscopy?
> Easy! 1 -11/38 =71%

And 3 months after laparoscopy?

Outline/Intended Learning Outcomes (ILOs)

Simple & common analyses: possibilities and pitfalls

ILO:
ILO:
ILO:
ILO:
ILO:
ILO:
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to perform a Kaplan-Meier analysis and a log-rank test

to fit and interpret a Cox model

to list the main limitations of the Cox model

to perform a Restricted Mean Survival Time (RMST) analysis

to exemplify the difference between a risk ratio and a hazard ratio
to recognize and avoid immortal time bias
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Censored data: the challenge!

Data
ordered by
time, n=38:

id time status
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What is the estimated probability of a woman not being
pregnant yet 1 month after laparoscopy?

> Easy! 1—6/38 = 84%

And 2 months after laparoscopy?
> Easy! 1 -11/38 =T71%

And 3 months after laparoscopy?

» Not easy! We don't know whether woman number 9
became pregnant during the third month. But we do
know that she was not pregnant yet at the end of the
second month... How should we use this “incomplete”,
but not “completely missing”, information?

Kaplan-Meier: main idea

Data
ordered by
time, n=38:

id time status

100 % —
84% — 1 - 6/38 = 84% (no censoring problem)
©
;71 % — 1-11/38 = 71% (no censoring problem)
3
% E 63 % — 71%x(1-3/{38-11-1})=63% : take care of censoring!
)
=
2 0
2
5o
[Z=%
g
15%
0% —
| —— T 1
0123 12 24
Time
Subjects atrisk 38 38 32 26 4 2

P(T >3)=P(T > 3|T >2) x P(T > 2) = 63%
—_—— N——
=1-3/26 =71%
Here ﬁ(T > 3|T > 2) =1 — 3/26 because at the third month we observe
3 pregnancies among the 26 women for whom we can observe a

pregnancy. These women are called women “at risk”. Note that 26 (at
risk) = 38 (all) - 11 (already pregnant) - 1 (already lost to follow-up).
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Kaplan-Meier: main assumption (our case, 1/2)

To be valid, the computation requires that the women lost to follow-up
by any time point are not different from those who remain in the study.
In other words, the “at risk” women need to be representative of all those

who have not experienced the event yet.

This means that the women lost to follow-up should have the same
chances of becoming pregnant that those who remain in the study.

» Realistic if e.g. loss of follow-up is due to study end and staggered

entries (especially if the accrual period is short).

» Not realistic if e.g. loss of follow-up is due to women dropping out

because they have received a new diagnosis of infertility that
discourages them from further trying to become pregnant.
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Kaplan-Meier: main assumption (in general, 2/2)

The “exact” definition and meaning of independent censoring is complex.

But, the concept and interpretation of independent right censoring is
essentially that among those who are still alive, additional information of
being uncensored should provide no further insight into the future risk of

event.’

17/69
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Typlcal KM plOt (same pregnancy data)

100% —

3
B3
1

50 % —

Survival probability

B
B3
|

0% —

r T T T 1
0 5 10 15 20

Subjects: 38 26 18 14 6 4 3 2 2 2 2

» 95% Cl, “ticks” to display the censored times, N. of subjects at risk.

» Does not go down to 0 when the largest observed time is a censored

observation (i.e., status=0). @
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» Plot stops where there is no longer subjects at risk (here 24 months) o

18/69

See e.g. Andersen, P. K., & Keiding, N. (2012). Statistics in Medicine, 31(11-12), 1074-1088.

KM plot Interpretation

100 % —
70%
z
3
g
554 % 1
(=%
g
238%
n
0%
1
20
Time
Subjects: 38 26 18 14 6 4 3 2 2 2 2

> The survival probability at t=5 months is estimated to be 54% (95%-Cl=
[38%;70%]).

P Similar results can be read for any time.

20/69
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Median survival time

100 % -

75% —

50 %

Survival probability

25% —

0% —

Time
Subjects: 38 26 18 14 6 4 3 2 2 2 2

» The median survival time is a parameter often meaningful to estimate; its
interpretation is that half of the time to events are shorter.

» The median survival time is estimated to be 6 months (95%-Cl= [3;10]).

> Here, we estimate that half of the women become pregnant within 6 months
as  after laparoscopy (95%-Cl= [3;10]).
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Data, n = 100 + 95 (experimental + standard):
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Case: carcinoma randomized clinical trial data

631
270
327
243
916
1823

Sphenoid sinus

Internal nares.

Entrance to auditory tube.

time status trt Nasopharynx : Nasal cavity

\ S External nares
1 1 Oropharynx
Hard palate
1 0 Y Soft palat
Laryngopharyn; oft palate
1 1 ryngopharynx
Oral cavity
1 1
1 0
0 0

The Upper Respiratory System

Research question: Does an experimental treatment of carcinoma of the
oropharynx, which combines radiotherapy and chemotherapy, improve
survival chances, as compared to standard radiotherapy treatment?

Reference/source: Kalbfleisch and Prentice, The statistical analysis of failure time data, 2002, Appendix II. @
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Which null hypothesis?

We need to be specific about what we mean, when we aim to compare
“survival chances”. Two simple and common approaches and their
corresponding null hypothesis (Ho) are:

» Comparison at a specific time point ¢, e.g., t=2 years.

Ho: Si(t) =S2(t)

meaning that the survival chances at ¢ years are the same. For the
interpretation, this is similar to the 2x2 table case of Lecture 5.
— the choice of ¢ should be prespecified and justified.

» Comparison of the survival curves “overall”.
Ho : S1 (t) = Sz(t) for all time ¢,

meaning that the survival curves are the same (everywhere). Often useful
when we expect than one curve is above the other, i.e. Si(t) > Sa(¢) for

all time t¢.
— most common choice, for which a log-rank test® is useful. @
See e.g. Bland & Altman. "The logrank test." (2004) BMJ 328(7447), 1073. [ ]
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Pointwise comparison at ¢t = 2 years

100 %
|

75%

Survival probability
50 %

25%

N. of subjects at risk: Time (years)

Standard 95 49 20 11 4
Experimental 10¢ 52 36 11 €

» In each group:

38.0% (95%-CI=[28.3, 47.6]) versus 28.0% (95%-CI=[18.6, 37.4])

> The survival difference is 10.0% (95%-Cl=[-3.5, 23.4], p-value=0.146) @

24/69

» See R-demo for computation. o
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Log-rank test to compare the survival curves Log-rank test to compare the survival curves
s 2
s | s | |
z " z "
Y -y
’ 5 ’ &
g g -
0 : . : . 0 : . : )
N. of subjects at risk: Time (yvears) N. of subjects at risk: Time (years)
Standard 95 49 20 11 4 Standard 95 49 20 11 4
Experimental Experimental
» The p-value of the log-rank test is p=0.336. We do not reject the null » The p-value of the log-rank test is p=0.336. We do not reject the null
hypothesis that the survival curves are the same in the two treatment hypothesis that the survival curves are the same in the two treatment
groups. groups.

» See R-demo for computation.

P But can we provide a matching 95%-Cl of an effect size? (see next slides})
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Hazard function (aka hazard rate function) Why using hazards?

Numerous statistical methods and concepts in survival analysis rely on the

The log-rank test actually compares the survival curves in each group via hazard function. This is because censoring is “easily” accounted for when
the comparison of the hazard functions estimating the hazard function, e.g. as in Kaplan-Meier computation.

100% 7 Remember from previous slide

The hazard function is: \(t) = d11g10 Pt<T<t+dt|T >t)/dt. sl Lo s0m o comong omem P(T>3)=P(T>3T>2) x P(T > 2)
1- 11/38 = 71% (no censoring problem) an d

Informally, for any (very) short time duration dt, the hazard \(t) e P(T>3|T>2)=1-P(T = 3|T > 2)
multiplied by this small duration dt is the probability of death before time

t 4 dt, given that a subject has survived until time t.

1- P(3< T < 4|T > 3)

1— A(t) x dt

where t = 3 and dt = 1 and

Knowing the hazard function is equivalent to knowing the survival 55 ;
. o t . . . //\\(t) _ N. of events at time ¢
function, as S(t) = exp ( — [, A(u)du), which explains why comparing N. of subjects at risk at time ¢
the hazard functions is equivalent to comparing the survival curves. R : ‘
@ e T,l; “ which gives /)\\(3) = 3/26. @
. Subjects atrisk 38 38 32 26 4 2 .
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Cox model and hazard ratios (univariate model)

The (univariate) Cox model is a popular model for the hazard function.

A(t[X) = Ao(t) exp(X3)

> \o(t) is called the baseline hazard function and nothing specific is
assumed about this component of the model.

» exp(p) is interpreted as a hazard ratio (HR), since

At X =z+1) Xo(t)exp( (x+1)3)

X =z )~ de@ep(zs) o)

» 3 =0< exp(f) =1 means 'no effect’, i.e., that the survival curves
are the same whatever the covariate value X = x.

> { gig } means { PII(I)%\};:: } survival when x increases.

» An important assumption is the hazard ratio (HR) does not depena
on t. This is the so-called he proportional hazards assumption.

28/69

Cox regression with one binary variable (2/3)

R code:

library(survival)

coxl <- coxph(Surv(time,status)~trt,carcinoma)
summary (cox1)

Output:

Call:
coxph(formula = Surv(time, status) ~ trt, data = carcinoma)

n= 195, number of events= 142

coef exp(coef) se(coef) z Pr(>lzl)
trtl -0.1622 0.8503 0.1685 -0.963 0.336

exp(coef) exp(-coef) lower .95 upper .95

trtl 0.8503 1.176 0.6111 1.183
Concordance= 0.53 (se = 0.023 )

Likelihood ratio test= 0.92 on 1 df, p=0.3
Wald test = 0.93 omn 1 d4df, p=0.3
Score (logrank) test = 0 p=0.3

.93 on 1 d4df, . E
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Example: Cox regression, one binary variable (1/3)

Research question: Does an experimental treatment of carcinoma of the
oropharynx, which combines radiotherapy and chemotherapy, improve
survival chances, as compared to standard radiotherapy treatment?

Statistical model: we model the hazard function as
A(t|X =) = Ao(t) exp(Bz) ,
where

| 1 for experimental treatment
“ 1 0 for standard treatment

20/69

Example: Cox regression, one binary variable (3/3)

P coef: the log of the estimated hazard ratio, B = —0.1622.

exp(coef): the hazard ratio, exp(/) = 0.8503.

» lower .95 and upper .95: 95% confidence interval for the hazard
ratio, 95-Cl=[0.61,1.18].

» Pr(>|zl|): p-value for the null hypothesis or

equivalently | Hy : exp(f) = 1}, i.e., no treatment effect. Here
p=0.336.

» the p-value is non significant and (equivalently) the confidence
interval of the hazard ratio does not include 1.

v

> Score (logrank) test: provide a p-value for the log-rank test, in
this specific case where there is only one categorical variable X in
the model.”

7In theory, it should match that of the survdiff function. However, it can be slightly different, due to minor differencies in tm
oomputation. Usually it does not matter when we round the results as appropriate, e.g. at the third digit. Note, however, that the n er
of digits presented by default in this output can be too small (here only one digit!).
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How to interpret HR = (0.857

When comparing two subjects alive after any ¢ days since treatment
initiation (e.g. after 1, 10, 100 or 1000 days®), we estimate that the risk
of death within the next day’ is 0.85 times lower for patients treated
with the experimental treatment than for those treated with the standard
treatment. That is, we estimate that the instantaneous risk of death is
reduced by 15% (=1 —0.85).

However, the 95% confidence interval tells us that we cannot rule out
that the instantaneous risk is reduced by as much as 39% or, on the
contrary, increased by up to 18%.

8Can be any day up to the maximum follow-up time, here 1823 days. [ )
9Here we consider that dt =1 day is a 'small enough’ duration for interpretation. ®
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Hazard ratio vs Risk ratio (1/3)

We have just seen that we can correctly interpret:
» the hazard ratio (HR) as the ratio of two instantaneous risks.
» 1-HR as a relative reduction in instantaneous risk (e.g. 15%).

However, we CANNOT safely interpret:
» the hazard ratio (HR) as the ratio of two “long term” risks.
» 1-HR as a relative reduction in “long term” risk.

This is, however, a common misunderstanding. 10 The misunderstanding
might come from the fact that some researchers talk about “risks”
without clarifying whether they mean 1 day, 1 year or 10 years risks and
forget that this is not the same! Also, for historical reasons, hazard ratios
are often referred to as a “relative risks”, which is a bit confusing.

1OSee e.g. Sutradhar & Austin, (2018). Relative rates not relative risks: addressing a widespread misinterpretation of hazard ra’.
Apmals of epidemiology, 28(1), 54-57; or Sashegyi and Ferry. "On the interpretation of the hazard ratio and communication of surviv
benefit." The oncologist 22.4 (2017): 484-486.
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Simple check of the model assumption

Reminder: an important assumption is the hazard ratio (HR) does not
depend on t (proportional hazards assumption).

8
o - Kaplan—Meier estimates:
E ~—— Experimental
— Standard
$ —
0
2
2z
2
g e . Cox model estimates:
5 o < = - Experimental
T ©° TS — - Standard
2 ~
5 S~
@ L~ .
N
I e s, S - TS PPy -
Q g ma 2 t_ e
8
(=}
T T T T
0 500 1000 1500
. . time (days;
N. of subjects at risk: (days)
Standard 95 77 49 30 20 16 11 10 4 3 1
Experimental 100 84 62 46 36 23 12 9 7 0 0

For a univariate Cox model with a binary covariate, we can graphically check the 'model fit’ (and
so the single modeling assumption) by comparing the survival curves estimated by the Cox mod

to those obtained via Kaplan-Meier (which makes no modeling assumptions). If the model fit isg
good, the curves estimated by both approaches should be “close” (approximately, as there is sw
sampling variability, as shown by 95%-Cls).

Hazard ratio vs Risk ratio (2/3)

Relative reduction in risk of Death within t-month (i.e. one minus risk ratio):

32% 25% 18 % 13%
100% —
2 75
% Hazard ratio = 0.6
o
g Relative reduction in ‘instantaneous' risk of death = 40%
g 50% -
2
=]
7
25% —
6 %

0% —

Months

The relative reduction in “long term” risk can be very different from one
minus the hazard ratio (e.g. 13% vs 40%), especially when the risks are @

5 N 1-0.19
large! ** Here, 13% =1 — {=55¢-

> (’Dllsame example in Sashegyi and Ferry. "On the interpretation of the hazard ratio and communication of survival benefit." The.
oncologist 22.4 (2017): 484-486.
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Hazard ratio vs Risk ratio (3/3)

Relative reduction in risk of Death within t-month (i.e. one minus risk ratio):
39 % 38 % 38 % 37 %

100% — 96 %

92 %

[ 76 %
Hazard ratio = 0.6

Relative reduction in ‘'instantaneous' risk of death = 40%

50% —

Survival probability

25% —

0% —

Months

The relative reduction in “long term” risk can be less different when the risks
are smalls.
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Crossing survival curves (expected or observed)

» |s the hazard ratio meaningful to summarize the difference in
survival chances over time shown below? Very questionable...

» The difference in restricted mean survival times is an attractive

alternative
® 1.0+ Hazard ratio, 0.74 (95% Cl, 0.65—0.85)
“.“._’ P<0.001
< 0.8 Events: gefitinib, 453 (74.4%); carboplatin
é ’ plus paclitaxel, 497 (81.7%)
]
e_
‘uo-o g 0.6
a2
5@ 044
z 4
E 02 Carbtl)platln B
s g plus Gefitinib
&‘-2 paclitaxel
0.0 T T T T T 1
0 4 8 12 16 20 24
Months since Randomization
No. at Risk
Gefitinib 609 363 212 76 24 5 0
Carboplatin plus 608 412 118 22 3 1 0

paclitaxel @

Rigure 2.A in Mok et al. "Gefitinib or carboplatin—paclitaxel in pulmonary adenocarcinoma." N. Engl. J. Med. 361.10 (2009): 947-9’
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A limitation of hazard ratios and an alternative

When using a Cox model, we (heavily) rely on the proportional hazards
assumption.

Sometimes it does not make sense and sometimes we simply wish to use
an alternative “non-parametric” method wich does not rely on any
assumption about how the two survival curves might differ.

For instance, the proportional hazards assumption implies that the (true)
survival curves cannot cross, which might be thought as a “strong”
arbitrary assumption in some contexts.

Instead of systematically planning to report hazard ratios when
comparing two survival curves, it is now increasingly recommended to
also consider reporting differences in restricted mean survival times.'?

12

See e.g. Uno et al. "Moving beyond the hazard ratio in quantifying the between-group difference in survival analysis." Journ
dlinical Oncology 32.22 (2014): 2380. See also, e.g., the statistical reporting guidelines of the New England Journal of Medicine, avatable
from the website of the journal. [ ]
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Restricted Mean Survival Time (RMST)

Why a “restricted” mean and not a usual mean? The mean survival time could
be a good summary of the survival time distribution, but it typically cannot be
estimated well because of limited follow-up (censoring).

The RMST up to time 7, e.g. expressed in years, is simply the population
average of the amount of event-free time experienced during the initial 7 years
of follow-up.

It can be estimated for any relevant time 7 no larger than the largest possible
follow-up time.

If we do not observed censored observations, we can estimate the RMST by a
simple average. With censored data, we can instead estimate it by the area
under the Kaplan-Meier curve up to time 7.

The choice of time 7 should be prespecified! 3

39/ 69. .

We usually choose it close to the maximal follow-up time, but slightly smaller, to observe 'enough’ subjects at risk at time 7. [ J
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RMST: area under the (Kaplan-Meier) survival curve Comparing RMSTs: example

R code:

100 %
1

library (survRM2)
RMSTfit <- rmst2(time=d$time/365, status=d$status, arm=d$trt, tau=tau/365)
RMSTfit

5%

Output:

50 %

The truncation time: tau = 3 was specified.

Survival probability

Restricted Mean Survival Time (RMST) by arm
Est. se lower .95 upper .95

RMST (up to 3 years)=1.43 years (95%-CI=[1.22,1.63]) RMST (arm=1) 1.641 0.103 1.440 1.842

- RMST (arm=0) 1.428 0.105 1.223 1.633

r T T T 1
0 1 2 3 4

25%

0%

N. of subjects at risk: Time (years) Restricted Mean Time Lost (RMTL) by arm
Standard 95 9 2 " 4 Est. se lower .95 upper .95
RMTL (arm=1) 1.359 0.103 1.158 1.560
RMTL (arm=0) 1.572 0.105 1.367 1.777

The interpretation is that if we treat future patients from the study
population similarly and follow them for 3 years, the average time spent Between-group °°ntraStEst Lower .95 upper .05 .
alive would be approximately 1.43 years (95%-Cl=[1.22,1.63]). @ RMST (arm=1)-(arm=0) 0.213  -0.074  0.500 0.146 @

RMST (arm=1)/(arm=0) 1.149 0.952 1.388 0.149
. RMTL (arm=1)/(arm=0) 0.865 0.710 1.053 0.148 .

40/69 41/69
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Interpretation Example: Cox regression, one continuous variable (1/2)

» RMST (arm=0): we estimate that if we treat future patients from the
study population with the standard treatment (trt=0) and follow them
for 3 years, the average time spent alive would be approximately 1.43

R h ion: D tients h bett ival ch th
years (95%-CI—[1.22.1.63]). esearch question: Do young patients have better survival chances than

old patients (in the standard treatment group)?

» RMST (arm=1): we estimate that if we treat future patients from the
study population with the experimental treatment (trt=1) and follow
them for 3 years, the average time spent alive would be approximately

1.64 years (95%-Cl=[1.44,1.84]).
Statistical model: we can model the hazard function via as

» RMST (arm=1)-(arm=0): on average, patients treated with the

experimental treatment are estimated to be alive 0.21 years (i.e. 77 days) At|X =x) = Ao(t) exp(Bx) ,
longer than patients treated with the standard treatment, within the 3
years following treatment initiation (95%-CI=[-0.074,0.500] years, i.e., where x represents the age of the patient at treatment initiation.

[-27,183] days, p-value=0.146).

» RMTL means “restricted mean time lost” and it is computed as -RMST

(where here 7 = 3 years). @ @

42/69 43/69
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Example: Cox regression, one continuous variable (2/2)

R code:

d0o <- d[d$trt==0,]

coxAge <- coxph(Surv(time,status)~age,data=d0)
summary (coxAge)

Output:

Call:
coxph(formula = Surv(time, status) ~ age, data = dO)

n= 95, number of events= 69

coef exp(coef) se(coef) z Pr(>|zl)
age -0.003678 0.996329 0.011640 -0.316 0.752

exp(coef) exp(-coef) lower .95 upper .95
age 0.9963 1.004 0.9739 1.019

Concordance= 0.516 (se = 0.038 )

Likelihood ratio test= 0.1 on 1 df, p=0.8
Wald test = 0.1 on 1 df, p=0.8
Score (logrank) test = 0.1 on 1 df, p=0.8

The usual computational trick

R code:

d0$agel10 <- d0$age/10
coxAgel0 <- coxph(Surv(time,status)~agel0,data=d0)
summary (coxAgel0)

Output (partial):

coef exp(coef) se(coef) z Pr(>|zl|)
agel0 -0.03678 0.96389 0.11640 -0.316 0.752

exp(coef) exp(-coef) lower .95 upper .95
agel0 0.9639 1.037 0.7673 1.211

Interpretation: we estimate that the instantaneous risk of death of a patient

10 years older than another (e.g. 60 versus 50) is reduced by 3.61%°
(95%-Cl=[-21%,23%], p-value=0.752).

L

Note: 3.61%=1-0.9639 [ J

46,/ 69.
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How to interpret HR = 0.99637

When comparing two subjects alive after any ¢ days since treatment
initiation (e.g. after 1, 10, 100 or 1000 days'#), one being one year older
than the other, we estimate that the risk of death within the next day15
is 0.9963 times lower for the older patient. That is, we estimate that the
instantaneous risk of death is reduced by 0.37%.

However, the 95% confidence interval tells us that we cannot rule out
that the instantaneous risk is reduced by as much as 2.61% or, on the
contrary, increased by up to 1.93%.

It might be clinically more relevant to report the results for e.g. a 10
years difference.

14Can be any day up to the maximum follow-up time, here 1823 days. o

45/ 60.

15Here we consider that dt =1 day is a 'small enough’ duration. ®

Important property /assumption: log-linearity
The model assumes that the hazard ratio (HR) is log-linear, that is,

At X =z + Az)
At X == )

= exp(AzfB) = {exp(B)}>*

for all values of x and A,.
This means that we assume that the HR is the same when comparing e.g.:
> age 50 and age 40 (z=40, A,=10)
» age 70 and age 60 (z=60, A,=10)
and the square root of that when comparing e.g.:
> age 45 and age 40 (=40, A,=5)
> age 65 and age 60 (=60, A,=5)

since
exp(0.5A,8) = y/exp(Asp) .

Remark: one should carefully think whether this assumption makes sense, in
each specific context it is used.!” When this does not make sense, categorizir@
a continuous variable is a simple solution (i.e. making age groups). °®

47/ 60,
17 How to best check this assumption using the data is not 'easy’ and it is beyond the scope of this introductory course. [ J

DEPARTMENT OF BIOSTATISTICS

DEPARTMENT OF BIOSTATISTICS



UNIVERSITY OF COPENHAGEN

UNIVERSITY OF COPENHAGEN

Example: multiple Cox regression, without interaction

Research question: Does a patient receiving the experimental treatment
have better survival chances than a patient receiving the standard
treatment, when both patients have the same age, tumor size and
disability at baseline? 18

Statistical model: we model the hazard function as

A(t|X = x) = Ao(t) exp(Br121 + 2w + B323 + Baza)

where X = (X1,...,Xy4), z = (x1,...,24), with 2o = age ,
o 1  experimental trt o 1 tumor size >4cm o 1 disability
= 0 standard trt » T3 = 0  tumor size < 4cm  ’ 4= 0  no disability

18

Here, because of randomization, this question is more or less the same as the simpler question “"Does a patient receiving the ,
experimental treatment have better survival chances than another receiving the standard treatment?”. Indeed, due to randomization ¥
patients of the two groups are similar (on average). With observational data, the simpler question could be much less interesting.

Interpretation

» trtl: When comparing two subjects alive after any ¢ days since
treatment initiation (e.g. after 1, 10, 100 or 1000 days'?), we
estimate that the risk of death within the next day?® is 0.9053
times lower for patients treated with the experimental treatment
than for those treated with the standard treatment, when both
patients have the same age (whatever it is), disability (either both
are disable or both are not disable) and tumor size (either both with
tumor >4cm or both with < 4cm ) . That is, we estimate that the
“adjusted” instantaneous risk of death is reduced by 9.5% (Hazard
Ratio= 0.95, 95%-CI=[1.10,0.65], p-value=0.558).

» Other lines: not related to the research question. One can still have
a similar interpretation, although it might not relate to a relevant
research question.

SDVSQIQCan be any day up to the maximum follow-up time, here 1823 days. )
20Here we consider that dt =1 day is a 'small enough’ duration for interpretation. @
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R code:
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cox2 <- coxph(Surv(time,status)~trt+age+Tsize+disability, data=carcinoma)

summary (cox2)

Output (partial):

coef
trtl -0.0994906
age 0.0001749
Tsize>4cm 0.1871734
disabilityYes 1.0862726

Signif. codes:

exp(coef)
0.9052984
1.0001749
1.2058364
2.9632083

0 “*%%x’ 0.001 “*x*’

se(coef)

z Pr(>|zl)
0.1699927 -0.585 0.558
0.0080015 0.022 0.983
0.2407842 0.777 0.437

0.1953929 5.5569 2.71e-08 *xx

.01 ‘%2

0.06 .7 0.1 ¢ 7 1

exp(coef) exp(-coef) lower .95 upper .95

trtl 0.9053
age 1.0002
Tsize>4cm 1.2058
disabilityYes 2.9632

49/69
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1.1046
0.9998
0.8293
0.3375

0.6488 1.263
0.9846 1.016
0.7522 1.933
2.0204 4.346
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Appendix: Estimated or “predicted” curves (with pointwise 95%-Cl)

100% — =g, ~—— Experimental treatment

0 —— Standard treatment

75% —

Survival probability

25% —

0% —

Time (days)

100% —

Survival probability

75% —

25% —

0% —

N ~—— Experimental treatment
. —— Standard treatment

Time (days)

Example: two examples of two patient’s profiles, when one receives the standard
treatment, the other the experimental treatment, both aged 60, with tumor size < @

4cm and either both are not disabled (left plot) or both are disabled (right plot).
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Independent data and “large sample” assumptions Case: Stanford heart transplant program?!
Data, n=103:
Note that for all methods discussed today: 1 futiz; quta: tranSplang
2 5 1 0
3 15 1 1
» We assume that the individual observations are independent. This 4 38 1 1
would probability not be realistic if e.g. we were studying the oY : ;

survival times of dental sealants from patients contributing with
several observations because of several treated teeth. E.g. level of

oral hygiene or eating habits might create strong correlations... .
ye g g g Variables (many others actually available...):

. “ " » futime: time in days since acceptance into the transplantation program
» 95%-Cl and p-value computation are based on “large sample utdme: Hine fh €ays st P ' P on prog

approximations. They might be moderately accurate with smallish > fustat: dead (1) or alive (0)
sample sizes... Some alternative “exact” methods exist and can be > transplant: received transplantation (1) or not (0)
used in specific contexts (but they are not widely known/used, yet).

Research question: Does cardiac transplantation prolong life?

52/69 53 6921Reference: Gail. "Does cardiac transplantation prolong life? A reassessment." Annals of Internal Medicine 76.5 (1972): 81579,
] see also e.g., Moore. Applied survival analysis using R. Springer, 2016.
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Common, but WRONG analysis! What is wrong?

We compared the survival chances of those who will be transplanted one day

100 % (in the future), to those who will not, and showed that those who will be
transplanted one day (in the future) survive longer.
75% —
= This is completely meaningless !
o 50% —
g
3
25% —
0% —

I T T 1
0 500 1000 1500

Days since acceptance into the program
N. of subjects at risk: 4 P prog

Not Transplanted 34 4 2 1 1 1 1 1 0 0 0
Transplanted 69 37 26 21 15 12 7 6 3 1 1
What is the interpretation? Is it meaningful? What's wrong? @ @

. 22It kind of answers the questions “If | am transplanted one day what are my survival chances? And what if | am never transp/a‘?”

54/69 55

[ ] See e.g. Suissa, S. (2008). Immortal time bias in pharmacoepidemiology. American journal of epidemiology, 167(4), 492-499. [ J
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What is wrong? What is wrong?

We compared the survival chances of those who will be transplanted one day We compared the survival chances of those who will be transplanted one day

(in the future), to those who will not, and showed that those who will be (in the future), to those who will not, and showed that those who will be

transplanted one day (in the future) survive longer. transplanted one day (in the future) survive longer.

This is completely meaningless ! This is completely meaningless !

1. At time zero, i.e. at time of acceptance in the program, neither the 1. At time zero, i.e. at time of acceptance in the program, neither the

doctors nor the patient knows whether the patient will be transplanted. doctors nor the patient knows whether the patient will be transplanted.
So, who could ever benefit from knowing these “survival chances”? This So, who could ever benefit from knowing these “survival chances”? This

122 122

analysis answers an irrelevant research question analysis answers an irrelevant research question

2. Even if the “intervention” (here transplantation) has no effect on survival,
the analysis will show that those receiving the intervention will survive
longer. Why?

It kind of answers the questions “If | am transplanted one day what are my survival chances? And what if | am never transp/a.l?”

22

e 2It kind of answers the questions “If | am transplanted one day what are my survival chances? And what if | am never transpla.f?”

556
See e.g. Suissa, S. (2008). Immortal time bias in pharmacoepidemiology. American journal of epidemiology, 167(4), 492-499. L] See e.g. Suissa, S. (2008). Immortal time bias in pharmacoepidemiology. American journal of epidemiology, 167(4), 492-499. [ J
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What is wrong? Take home message

We compared the survival chances of those who will be transplanted one day
(in the future), to those who will not, and showed that those who will be

- I
transplanted one day (in the future) survive longer. Do not condition on the future!

This is completely meaningless !

1. At time zero, i.e. at time of acceptance in the program, neither the > In survival analysis, define groups (and “adjust”) based on what is known

doctors nor the patient knows whether the patient will be transplanted. at “time zero” only.
0, who could ever benefit from knowing these “survival chances”? This N PR L
So, wh uld ever i wing the 22“ VIV : » This might seem “obvious” today, but keep in mind that once the data
analysis answers an irrelevant research question! . . o
are recorded in your excel sheet or csv file or database, it is often no

2. Even if the “intervention” (here transplantation) has no effect on survival, longer obvious to know when e.g. a blood sample, diagnosis or claimed
the analysis will show that those receiving the intervention will survive prescriptions has been observed, and whether it was before or after the
longer. Why? Just because the patients need to survive “long enough” to start of the follow-up.

receive th.e mterv.entlon. These patients ::Ian never”be ol?served dea.d before » Advanced statistical methods can sometimes help, although not always, to
they receive the intervention. They are “immortal” until they receive the

intervention. This introduces a so-called " immortal time bias"* analyze "time-dependent” covariates measured after the start of
’ follow-up. Seek help from a statistician!

22It kind of answers the questions “If | am transplanted one day what are my survival chances? And what if | am never transpla‘?" .

5569 56/69

See e.g. Suissa, S. (2008). Immortal time bias in pharmacoepidemiology. American journal of epidemiology, 167(4), 492-499. [ ] [ J
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A simple, better, analysis: landmarking (sometimes meaningful, not always, 1/4) A simple, better, analysis: landmarking (sometimes meaningful, not always, 2/4)

o censored alive
® death

o censored alive
® death
e transplantation

1

* . Q5 3 9o °

= o a—C

= 32 P
s = ° o 2 ° Transplantation
2 ) = o 8 ﬂ:ﬂg':g . o * within 30 days
% <<, . 8 ey o o after 30 days
a e 154

i:. o .:‘r—.?!_. Qo

it S il . ©

5: . E Y °

0] o =5 .

- — P

?’ : : ‘ r T T 1

0 500 1000 1500 030 500 1000 1500

Days since acceptance into the program Days since acceptance into the program
> Let's look at what has happened within the first, say, 30 days. ﬁ
» The full data... ‘ A
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A simple, better, analysis: landmarking (sometimes meaningful, not always, 3/4) A simple, better, analysis: landmarking (sometimes meaningful, not always, 4/4)
S — transplantated within 30 days
=% —— not transplantated within 30 days 100 % —
=, 75%
e ——— 0
—e =
9 o %

L= ° 8
= | 2 o a50 %

2 = o g

Q2 = 4 2

B > 7

[on .4 @
= o 25%
=24
=5 oe)
e
= . o o o 0% -
! T T T 1
-9 * 0 500 1000 1500
.i N. of subjects at risk: Days since 30 days after acceptance into the program
. Not Transplanted 33 15 12 9 7 4 2 2 2 1 1
r T T 1 Transplanted 46 26 16 13 9 9 6 5 1 0 0
0 500 1000 1500

Days since 30 days after acceptance into the program

Interpretation: a doctor meets two patients accepted in the program exactly

> We move “time zero” from date of acceptance into the program to the 30 days they have been accepted into the program. One has been transplante
same date plus 30 days. Now the two groups that we compare are “we within the 30 days, the other has not. The curves show the estimated
= defined” at new “time zero”. Note: we study those alive at 30 days on* ° survival curves (“prognosis”) for these two patients. ®
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Digression: Does the statistical method matter? Yes !

Note that maybe the wrong analysis gave the right answer. But that is
not the point!

1. In practice, you do not know what is right or wrong, and that is why
analyzing the data at hand should be interesting. Hence an
obviously wrong analysis cannot be useful.

2. Even if the conclusion is correct, the claim that the data support the
conclusion cannot be correct, if the statistical analysis is incorrect.
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Outline/Intended Learning Outcomes (ILOs)

Competing risks
ILO: to exemplify competing risks data
ILO: to describe a very common mistake
ILO: to employ a basic (but appropriate!) method for competing risks data

62/69
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What is a competing risks situation?

A competing risks’ situation, which is frequent in epidemiological
follow-up studies, is the situation in which the event of interest (e.g.,
stroke) does not happen for all subjects, as one or several other types of
event, called “competing events”, prevent the main event from
happening (e.g, non cardiovascular death prevents strokes, as we cannot
suffer a stroke once we are dead).

Note that censoring is different, as it only prevents the event from being
observed; it does not prevent the event from happening.

63/69
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Competing risks examples

Main Event
(e.g. Hospitalization)

At risk

(e.g. Alive at home)

Competing Event
(e.g. Death at home)

Other examples:

Main event Competing event
Stroke Death (without stroke before)
Cancer Death (without cancer before)
Leaving ICU* Death (in ICU)
Weaning®® Death (before weaning)
Healing complication ?°  “Normal” loss of primary teeth
Death at work Retiring
Pregnancy Stop trying or menopause @
24| : intensice care uni
64 6925Ac:ongtpremature babites who require parenteral (intravenous) nutrition .

in primary teeth
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Case: HF-ACTION randomized trial data *’ Common, but WRONG Kaplan-Meier analysis

Data, n=377 + 364 :

4
time status trt :1 Unfortunately, many researchers use status=0 for both status=0 and
; g:%;; g (1) status=2, to be back to the usual survival data format, and then run a
3 1.0897 0o o Kaplan-Meier analysis. That is, they treat death as censoring. This is
4 0.7009 10
5 0 5019 Lo . 29 [ N | fundamentally wrong.
6 0.3778 11

The risks of hospitalization which are computed in that way are not
meaningful. Here they would actually estimate the risk of hospitalization
in the hypothetical world in which nobody dies without being hospitalized
Variables: first. Alternatively, we can conclude that they overestimate the true

» time: time in years to an event or end of follow-up transplantation program risks.?®

The usual competing risks data format!

> status: type of event: (first) hospitalization (1), death (2) or censoring (0)
In short, treating a competing risk as censoring corresponds to estimate
risks in the hypothetical world in which the competing risk does not exist.

. “_g - . 1729
Research question: Does exercise training, in top of usual care, lower the risk of It is usually better to “stick to this world".

hospitalization among heart failure patients? @ @
28 ’

Huebner et al. "Competing risks need to be considered in survival analysis models for cardiovascular outcomes." The Journal
. thoracic and cardiovascular surgery 153.6 (2017): 1427-1431. .

Reference: O'Connor et al. Jama 301.14 (2009): 1439-1450. Data (subgroup) from the R package WA. [ J See e.g. Andersen, P. K., & Keiding, N. (2012). Statistics in Medicine, 31(11-12), 1074-1088. [ ]

> trt: exercise training (1) or usual care (0)

6569,
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Correct analysis (1/2) Correct analysis (2/2)

100 %

—] = No training
~= Training

75 %

To estimate risks in a competing risks situation, we used specific
methods. We often say that we estimate the “cumulative distribution
function” or the “absolute risk” in that case. Using this “jargon”
emphasizes that we aim to properly account for competing risks.

Absolute risk
50 %

25%

0%
|

» Instead of Kaplan-Meier, we can use the Aalen-Johansen estimator.3° Time
N. of subjects at risk:

» Regression models also exist. Seek help from a statistician. Nolaning $77 266 212 161 127 B3 %8 %18 B0

Training 364 280 220 175 132 97 65 48 32 17 1

P> Estimates of the absolute risks of hospitalization obtained with the
Aalen-Johansen estimator.3!

> We see that, for e.g., the 3-year absolute risks are estimated as 69.9% (95%-C
@ [64.6, 75.3]) and 74.7% (95%-Cl [69.7, 79.8]) with and without “training”.
o — _ _ ) , This corresponds to a difference -4.8% (95%-ClI [-12.1, 2.6], p=0.204). ()
67/69 uebner et al ompeting risks need to be considered in survival analysis models for cardiovascular outcomes." The Journal 58/65g

thoracic and cardiovascular surgery 153.6 (2017): 1427-1431. ] See R-demo for the (simple) R code. [ ]
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Reminder of today’s topics and ILOs

Survival Data

ILO:
ILO:
ILO:

to recognize survival data and list contexts in which we meet them
to define censoring and explain the challenges it creates
to distinguish censoring from a competing risk

Simple & common analyses: possibilities and pitfalls

ILO:
ILO:
ILO:
ILO:
ILO:
ILO:

to perform a Kaplan-Meier analysis and a log-rank test

to fit and interpret a Cox model

to list the main limitations of the Cox model

to perform a Restricted Mean Survival Time (RMST) analysis

to exemplify the difference between a risk ratio and a hazard ratio
to recognize and avoid immortal time bias

Competing risks

ILO:
ILO:
ILO:
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to exemplify competing risks data
to describe a very common mistake
to employ a basic (but appropriate!) method for competing risks data



