
u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f b i o s t a t i s t i c s

Faculty of Health Sciences

Day 8: Repeated measurements and
clustered data

Paul Blanche
Section of Biostatistics, University of Copenhagen

Mars 19, 2025



u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f b i o s t a t i s t i c s

Outline/ILOS

Scientific & Statistical reasoning:
ILO: to recognize repeated measurements and clustered data and list contexts
in which we meet them.
ILO: to distinguish between situations in which simple analyses are sufficient
and situations where they are not.

Statistical methods
ILO: to summarize these data to provide appropriate descriptive
statistics/plots and to make simple inference.
ILO: to examplify why missing data is a common challenge with repeated
measurements and deal with it.
ILO: to fit a random effect model and interpret the results.
ILO: to fit a Mixed Model for Repeated Measurements (MMRM) and
interpret the results.
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What and why clustered data?

We say we have clustered data when the same outcome is measured on
groups of subjects/animals that are somehow related. They share a
heritage, an environment, or a more or less random experimental
condition.

Examples:
I Rats from the same litter/cage
I Children from the same family/school
I Patients from the same hospital

I Follicles from the same woman
I Febrile episodes from the patient
I Knees from the patient

Why are they common? Often easier to collect the data.
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Why does clustering matter?

Example: when studying episodes of febrile neutropenia in high-risk children
with leukemia, we can collect data from several episodes of the same children.
In that case, we might expect that the outcomes from two febrile episodes of
the same child are more likely similar than the outcomes of two episodes from
two different children. That is, we cannot rule out within-patient correlation
between episodes.

General concept: we cannot rule out that the outcome from two
patients/animals from the same cluster are systematically more (or less) similar
than the outcome of two patients/animals from two different clusters. This
implies that within-cluster correlation might exist and that the usual
“independence” assumption assumed by most “standard” statistical methods
might be wrong (and potentially seriously wrong).

Consequently, estimates, standard errors, 95% confidence intervals and p-values
produced by “standard” methods ignoring the clustering might be unreliable.
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Case: human follicle data

Data: n=724 follicles, from J=14
patients (diameter in µm; NA if follicle is dead).

Patient Treatment Day0 Day8
1 1 FBS 101.4590 161.500
2 1 FBS 89.8315 NA
3 1 FBS 90.2835 129.447
4 1 FBS 120.3145 170.740
5 1 FBS 93.0085 120.940
6 1 FBS 73.0530 109.947

Research question: How do platelet-rich plasma products like human platelet
lysate (HPL), human serum albumin (HSA), fetal bovine serum (FBS) and
umbilical cord plasma (UCP) affect the growth of isolated human pre-antral
follicles in vitro?

Ref: Adrados et al. Reproductive BioMedicine Online 47.5 (2023): 103256.
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Growth/size is defined via the diameter

Ref: Adrados et al. Reproductive BioMedicine Online 47.5 (2023): 103256.
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Random effect model, aka “Mixed model”

Model for the outcome “log2-growth at day 8” of the j-th follicle of the
i-th woman:

Yij = µ+ xijβ1 + zijβ2 + uijβ3 + vijβ4 + ai + εij

There are “fixed” effects and “random” effects (hence the term “mixed”).
The random variation is modeled using two random terms,

ai ∼ N(0, ω2
B) and εij ∼ N(0, τ2

W ) .

I The variances ω2
B and τ2

W are called variance components
I ω2

B is the variance Between clusters (here, between women) and τ2
W

the variance Within clusters. We say that the total variance is
σ2
T = ω2

B + τ2
W (sum of variance “explained by the woman” and “unexplained” variance).
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I Data from two different women are assumed to be independent
I Data from two follicles of the same woman are NOT assumed to be

independent, but correlated. The correlation is modelled by

ρ = ω2
B

σ2
T

= ω2
B

ω2
B + τ2

W

and it is called the intra-class correlation. Here, it represents the
correlation between two follicles of the same woman.

log−growth of a random follicle
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Mixed model assumption versus “standard” linear model assumption
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Interpretation/details
I xij = 1 (resp. zij = 1, uij = 1 ) if the j-th follicle of the i-th woman is grown

using HPL (resp. HSA, UCP), 0 otherwise (i.e., reference is FBS).
I vij is the (log2 of the) baseline size (at day 0), of the j-th follicle of the i-th

woman, minus log2(75) (i.e., minus the log2 of the average baseline size of 75µm).
I βk for k = 1, . . . , 3: the mean difference in the log2-growth at day 8 (outcome)

between two follicles, either of the same woman or of two different women,
having the same baseline size, one is grown using HPL (when k = 1, HSA if
k = 2, UCP if k = 3) and the other is grown using FBS (the reference plasma product).

I β4: the mean difference in outcome between two follicles, either of the same
woman or of two different women, one having a log2 baseline size of v + 1, the
other of v, when both follicles are grow using the same plasma product (i.e., same

group).
I µ (intercept): the mean outcome in the reference group FBS, for a follicle of the

average baseline size (75µm), for an average woman.
I ai: the woman’s random effect, i.e., the (average) deviation in log2-growth of a

random follicle from the i-th woman to that of the average woman, when
comparing two follicles grown with the same (plasma product) group and
baseline size (i.e. random variation “explained” by the woman).

I εij : “error” term, i.e., random variation neither explained by the woman nor by
the covariates. Random deviation in log2-growth of the j-th follicle to the
average follicle of the same woman, when comparing two follicles grown with the
same (plasma product) group and of the same baseline size.9 / 46



u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f b i o s t a t i s t i c s

Note: data should be in the “long” format, see slide for other case study.

R code:
library(lmerTest)
fitlmer <- lmer(loggrowth ~ Treat + logDay0 + (1|PatientID), data=d)
summary(fitlmer)

Output (partial):
Random effects:
Groups Name Variance Std.Dev.
PatientID (Intercept) 0.02922 0.1709
Residual 0.16535 0.4066

Number of obs: 401, groups: PatientID, 14

Fixed effects:
Estimate Std. Error df t value Pr(>|t|)

(Intercept) 5.33230 0.06444 31.40511 82.743 < 2e-16 ***
TreathPL 0.86209 0.05570 391.56039 15.476 < 2e-16 ***
TreatHSA 0.10280 0.06550 395.99353 1.570 0.117
TreatUCP 0.42651 0.07524 389.59172 5.668 2.81e-08 ***
logDay0 0.77064 0.04868 395.61392 15.832 < 2e-16 ***

Note: 401 out of 724 follicles are still alive by day 8; the dataset d here only contains data from the survivors.
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Fixed effects:
I (intercept): 5.332 is the estimated value of µ
I TreathPL: 0.862 is the estimated value of β1

I TreatHSA: 0.103 is the estimated value of β2

I TreatUCP: 0.427 is the estimated value of β3

I logDay0: 0.771 is the estimated value of β4

Random effects:
I PatientID (Intercept): 0.1709 is the estimated value of ωB
I Residual: 0.4066 is the estimated value of τW

Note: we can further deduce σT =
√

0.17092 + 0.40662 = 0.441 and (with the σ2
T

being the total variance) and the intra-class correlation ρ = 0.17092/0.4412 = 0.15.
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Another illustration of intra-class correlation (simulated data)
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Illustration. Left panel corresponds to the fitted model; right is for comparison, with
larger intra-class correlation ρ. Shown are 10 follicles for 5 women, assuming all
follicles have the same treatment (FBS) and size at day 0 (“average” log baseline
size). The larger the “between” variance ω2

B relative to the “within” variance τ2
W , i.e.,

the higher the intra-class correlation ρ, the larger the difference between the means
per woman (triangles) relative to the distances between the differences between two
follicles of the same woman (the dots of the same color).
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Results: lm (“naive”) versus lmer (recommended)

R code:
(“standard” linear model, lm)
fit1 <- lm(loggrowth ~ Treat + logDay0 ,

data=d)
summary(fit1)

(linear “mixed” model, lmer)
fitlmer <- lmer(loggrowth ~ Treat + logDay0

+ (1|PatientID), data=d)
summary(fitlmer)

Output (partial):
Estimate Std. Error Pr(>|t|)

(Intercept) 5.34283 0.04734 < 2e-16 ***
TreathPL 0.85701 0.05806 < 2e-16 ***
TreatHSA 0.17032 0.06515 0.00928 **
TreatUCP 0.41879 0.07916 2.03e-07 ***
logDay0 0.72752 0.04980 < 2e-16 ***
---

Residual standard error: 0.4387

Estimate Std. Error Pr(>|t|)
(Intercept) 5.33230 0.06444 < 2e-16 ***
TreathPL 0.86209 0.05570 < 2e-16 ***
TreatHSA 0.10280 0.06550 0.117
TreatUCP 0.42651 0.07524 2.81e-08 ***
logDay0 0.77064 0.04868 < 2e-16 ***

√
total variance (i.e., σT )=0.441.

Note: not all women have follicles grown in all products. Especially, three women have no follicles grown in HSA and additional results

(unshown) suggest that follicles of these women were estimated to grow less than those of an average woman. The mixed model somehow

accounts for this random unbalance, resulting from random variation.
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Digression: further interpretation of variance components

Typical difference between log2-growth of two follicles of the same woman,
when comparing two follicles grown with the same plasma product and of the
same baseline size:

I within: ± 1.96
√

2× ω2
B = ± 1.96

√
2× 0.172 = ± 0.48 (in log µm)

Typical difference between log2-growth of two follicles of different women,
when comparing two follicles grown with the same plasma product and of the
same baseline size:

I within: ± 1.96
√

2× ( τ2
W + ω2

B︸ ︷︷ ︸
=σ2

T

) = ± 1.96
√

2× (0.172 + 0.412) = ± 1.23

Note: we multiply the variances by 2 because there are 2 women (error terms, hence variances, add up). Here, “within” means the width

of the 95% prediction interval or, equivalently, of the normal range.
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Results back transformed (original scale)

I For example, 2β̂1 = 20.86209 = 1.82 (hPL vs FBS)

Ref: Adrados et al. Reproductive BioMedicine Online 47.5 (2023): 103256.
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Does clustering always matter?

I No! Sometimes we can reasonably expect that the variance between clusters
(ω2
B) is negligible as compared to the variance within cluster (τ2

W ), resulting in
an intra-class correlation (ρ) so small that it can be considered as zero for all
practical purposes.

I But, making this assumption requires that we are ready to carefully defend its
rationale. Skeptical/thorough reviewers will require the rationale! And
sometimes the random effect model analysis as a sensitivity analysis too...

I In case of doubt, it is usually recommended to “let the data speak freely”, hence
use a mixed model that allows for intra-class correlation ρ > 0.

Example: A similar study was conducted with follicles coming from mice and the
intra-class correlation was considered negligible in the statistical analysis. The
rationale was that there was not much phenotypical variation from mouse to mouse
because both the genotype and the environment were similar for all included mice.
The mice were all fed similarly, kept in the same cage, of the same age and coming
from the same litter. This is unlike with human data, because individuals included in
typical human studies (such as our case study) are coming from different genotypical
backgrounds, are exposed to different environments, have different lifestyles and have
different ages and comorbidities.
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Digression: truncation by death (1/2)

Here we studied and compare follicle growth among follicles alive after 8 days.
Here it is not important that many follicles die, as long as many survive and
grow well. This is because (as I understood it) the ultimate goal of this
research is to improve the way we can obtain a few good follicles to transfer to
a woman in needs of infertility treatment.

In some other contexts, looking at a change in outcome among the survivors
only might be misleading. For instance, comparing improvements in Quality of
Life (QoL) scores might be misleading if survival rates differ between the two
groups that we compare. Often, comparing outcomes among the survivors
makes sense only if the survival rates are similar in both groups1.

Statistical jargon: we often say that an outcome is truncated by death if this
outcome does not exist (i.e., “is not defined”) for patients who die (e.g., QoL).

1or if the differences is in the same direction for survival rate and for the change in outcome (e.g., QoL) among the survivors
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Digression: truncation by death (2/2)

In the case study, we can conclude that UCP “works better” than “FBS”, because of
better growth (in average), even though the survival rate is less good. This is because
sufficiently many follicles survive.

If we were comparing “QoL in patients” instead of “growth in follicles”, the conclusion
would be rather different!

Note & ref: ‘‘Follicular survival was analysed by fitting a logistic mixed model with follicle survival as the outcome, patient as a random
effect and experimental group as a fixed effect.” (Adrados et al, 2023) . This is a “similar” mixed model, but the presentation of this
model is beyond the objective of this course.
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What are repeated measurements data?
Repeated measurements usually refer to data where the same outcome has
been measured several times on the same subject.

Examples:
I follicle growth after 2, 4, 6 and 8 days (previous case study).
I GLP-2 concentration 2 in the blood 10, 20, 30,. . . and 240 mins after food

intake (next case study).
I score at 6 and 12 weeks after treatment initiation (last case study).

2GLP-2: Glucagon-like peptide 2
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Why are they common?

Often, either...

They are needed: having repeated measurements allow health science
researchers to study changes over time within the same subjects and factors
that influence them such as treatment.

or...

They are “easy”/”cheap” to obtain: often, the main outcome is measured after
some time, at end of follow-up (e.g., 8 days in the follicle growth case study, 12
weeks in the next case study). It is often relatively easy and not much
additional effort to collect additional data for the same outcome at a couple of
earlier timepoints.
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The stat analysis does not always need to be advanced!

I A relevant outcome to analyze (and sometimes the most relevant)
might be a single value that summarizes all the repeated
measurements of the same patient.
I e.g., GLP-2 next case study.

I Sometimes we have collected repeated measurements mostly
because we could, not because we needed. E.g., when the main
outcome is the repeated measurement at end of follow-up.
I e.g., follicle growth in the previous case study.

IMPORTANT: in these two cases, the main statistical analysis can
often be performed using“simple” statistical methods that are not
specific to repeated measurements data (e.g., linear model, ANOVA, ANCOVA).
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Case: GLP-2 stimulation data

Data: GLP-2 concentrations (pmol/L) of n=10 patients at 10, 20,
30,. . . and 240 mins after food intake and 15 mins before, when
eating three different meals (first columns shown).

ID meal GLP2.minus.15 GLP2.10 GLP2.20 GLP2.30
1 High carbohydrate 1 18 38 44
1 High fat 1 30 27 24
1 High protein 8 7 4 13
2 High carbohydrate 4 21 25 23
2 High fat 1 1 13 8
2 High protein 2 16 23 31

Research question: Does the stimulation of GLP-2 secretion differ after eating
carbohydrate, fat or protein enriched (iso-energetic) meals?

Ref: Prahm et al. Peptides. 2023 Nov 1;169:171091.
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Ref: Prahm et al. Peptides. 2023 Nov 1;169:171091.
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How to define simple yet relevant outcomes?

I The main interest was in the stimulation, hence this is the change in
concentration as compared to before food intake, that defines the
repeated measurements outcome of primary interest.

I The main comparison was based on the area under the curve (AUC)
of the change from baseline. This is a simple summary of change in
concentration over time, which is sufficient to answer the research
question.

I Secondary interests were in the stimulation within the first 60 mins
and after 60 mins (and up to 240 mins). AUCs using the
corresponding time intervals was therefore used too.
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Common summary outcomes (sometimes relevant, not always)

I outcome at end of follow-up (last

measurement occasion)

I change at end of follow-up ( i.e., difference

between outcomes at end of follow-up and before

intervention; common in e.g., RCT for pain/functioning

scores or weight loss outcomes)

I area under the curve (AUC, common in e.g.,

pharmacokinetics; it is a “weighted average”.)

I average of all responses (≈ same as AUC if

equal time intervals between measurement occasions)

I minimum/maximum (e.g. PSA nadir)

I time to reach a specific value (e.g., time

to max or time to 30% decrease)
Ref: Matthews et al. "Analysis of serial measurements in medical
research." British Medical Journal 300.6719 (1990): 230-235.
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Spaghetti plot

An often useful descriptive plot of repeated measurements data, especially with small
sample sizes, is the Spaghetti plot. Observations from the same subjects are linked, to
emphasize the correlation structure of the data.
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Note: it is a crossover study and here the same colors are used for the same subjects
(that eat all three meals at different days, at least one week apart).
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Digression: “wide” vs “long” data format
The original data we import from e.g. Excel is often in wide format:

ID meal GLP2.minus.15 GLP2.10 GLP2.20 GLP2.30
1 High carbohydrate 1 18 38 44
1 High fat 1 30 27 24
1 High protein 8 7 4 13
2 High carbohydrate 4 21 25 23
2 High fat 1 1 13 8
2 High protein 2 16 23 31

To fit mixed models or perform similar analyses (e.g., to produce Spaghetti plots), we often need
the data in the long format:

ID meal time GLP2
1 High carbohydrate -15 1
1 High carbohydrate 10 18
1 High carbohydrate 20 38
1 High carbohydrate 30 44
1 High fat -15 1
1 High fat 10 30
1 High fat 20 27
1 High fat 30 24
1 High protein -15 8
1 High protein 10 7
1 High protein 20 4
1 High protein 30 13
2 High carbohydrate -15 4

Note: we can go from one format to the other using the reshape() function of R (see R-demo).
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From “complex” to “simple” data

In this case study, the correlation structure between the observations of GLP-2
concentrations is complex. The data are correlated because of:

I repeated measurements: data from the same patient at different times
after food intake.
I represented by the lines on the Spaghetti plot.

I cross-over design: three series of repeated measurements for each patient,
one after each of the three meals.
I represented by colors in the Spaghetti plot.

Defining the AUC as the primary outcome of interest reduces the complexity of
the data to “simpler” paired data.
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Case (con’t): GLP-2 stimulation “paired” data
Data: AUC of the curve of the change of GLP-2 concentration
within 240 mins (pmol.min/L) of n=10 patients, after eating three
different meals at three occasions. Change refers to change from
baseline (15 mins before food intake).

High carbohydrate High fat High protein
1 6447.5 3650.0 3927.5
2 3587.5 6665.0 5775.0
3 7335.0 6147.5 8155.0
4 3680.0 6337.5 6047.5
5 5227.5 3292.5 7270.0
6 3965.0 7567.5 8840.0
7 2850.0 4807.5 8682.5
8 6122.5 5422.5 8262.5
9 6355.0 1562.5 6632.5
10 2065.0 2507.5 9195.0

Research question: Does the stimulation of GLP-2 secretion differ after eating
carbohydrate, fat or protein enriched (iso-energetic) meals?

Ref: Prahm et al. Peptides. 2023 Nov 1;169:171091.
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Shown are individual observations (AUCs), estimated mean AUC and 95%-CI for each
meal (see lecture 1) and corrresponding p-values from a paired t-test (see next slide).
Observations from the same subjects are linked, to emphasize the correlation structure
of the data (same subjects).

Note: reporting differences in mean (between meals) with 95%-CI is also common and
usually good practice (in addition or instead of these results).
Ref: Prahm et al. Peptides. 2023 Nov 1;169:171091.30 / 46
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Digression: common mistake!

In lecture 1, we have seen that we can sometimes deduce whether a
difference in mean is statistically significant from a visual comparison of
the confidence intervals and estimates in the two groups that we compare.

This works for two “independent” samples, but this does not work for
paired data as in the previous plot.
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R code:
t.test(dauc[,"High protein"],dauc[,"High fat"],paired=TRUE)

Output (partial):
Paired t-test

data: dauc[, "High protein"] and dauc[, "High fat"]
t = 3.1966, df = 9, p-value = 0.01089
alternative hypothesis: true mean difference is not equal to 0
95 percent confidence interval:

725.7702 4239.7298
sample estimates:
mean difference

2482.75
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Reminder: paired t-tests are one-sample t-tests (see lecture 2)

R code:
t.test(dauc[,"High protein"]-dauc[,"High fat"])

Output (partial):
One Sample t-test

data: dauc[, "High protein"] - dauc[, "High fat"]
t = 3.1966, df = 9, p-value = 0.01089
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:

725.7702 4239.7298
sample estimates:
mean of x

2482.75
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Digression: why are crossover designs popular?

I In short, patients included in the two arms of a usual randomized trials
will never be exactly similar for all of what could matter (e.g., age, disease
severity, comorbidity, lifestyle, genotype...). Randomization will only make
the differences “small” and non-existent “in average”.

I This random unbalance at baseline might cause some false positive
findings.

I Usual statistical analysis accounts for that, but the price to pay is to
compute sufficiently large confidence intervals and p-values.

I In crossover trials, the design substantially reduces random unbalance at
baseline. Only time-varying factors, e.g., blood pressure, might differ.
Properly accounting for that in the statistical analysis, using appropriate
methods for paired data, makes it possible to compute narrower
confidence intervals and p-values.

Note: a similar reasoning applies in contexts in wchich stratified randomization is used.
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Case: baseline follow-up study (of a neurodegenerative disease, RCT)

Data: scores of n=166 patients randomized 1:1,
some missing values at follow-up visits (missed
visit). The higher the score the better. Shown
are changes from baseline.

id trt baseline week6 week12
1 1 SoC 1.4149135 0.5570839 0.4874180
2 2 SoC 0.5392197 0.6747093 0.2686820
3 3 Exp 0.6554562 -0.7778319 0.6444571
4 4 Exp 1.7226614 2.2641281 0.7723273
5 5 SoC -2.8416278 0.9717710 2.1931570
6 6 SoC 2.7684744 -2.5536338 NA

Research question: Does the experimental treatment (Exp) improve the score
of the patients at week 12, as compared to standard of care (SoC)?
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Missing data are challenging!

I “First, it needs to be determined whether missingness of a particular value hides
a true underlying value that is meaningful for analysis.” E.g., Quality of Life, pain or functioning

scores or CD4 counts do not exist after death!

I “Third, reasons for missing data must be documented as much as possible.”
I “Fourth, the trial designers should decide on a primary set of assumptions about

the missing data mechanism.”
I “Fifth, the trial sponsors should conduct a statistically valid analysis under the

primary missing data assumptions.”

Note: the second principle is about well-defined estimands, the sixth about sensitivity analysis.
Ref: National Research Council. 2010. The Prevention and Treatment of Missing Data in Clinical Trials. Washington, DC: The National
Academies Press. https://doi.org/10.17226/12955 (pages 48-49)
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I Without missing data, the “standard” approach is to fit a usual ANCOVA model
(lecture 7). It would provide “model robust” conclusions thanks to randomization.

I Results shown are those obtained from the “complete case analysis” (i.e., excluding

patients with a missing change score at 12 weeks).
I Baseline scores of the 16 patients with missing values for the change score at

week 12 are shown by “ticks” on the x-axis.37 / 46
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Missing data pattern
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It is usually useful to transparently report the missingness pattern and explain what
could be the most likely causes of each case. Recommendation: always produce this
plot, at least to check that there is nothing unexpected or implausible (e.g., with the follicles

data the second line, showing intermittent missing data, would have indicated a typo in the data collection, as NA encoded a follicle

“dead” at that day).
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Missing data: issues and a solution (often useful, but not always)

Challenges with missing data include:

I if the missing data are not “Missing Completely At Random” (MCAR),
the complete case analysis is usually biased. Informally, we say that the
missing data are MCAR if missingness is unrelated to outcome and
covariates

I even with MCAR, using some available information about the excluded
patients usually increases the power (e.g., change score at week 6). Idea:
some kind of information is better than none!

Solution using a Mixed-effect Model for Repeated Measures (MMRM):
I prevents bias if the data are “Missing At Random” (MAR), meaning that

the missingness may depend on covariates and previous measures of the
outcome (e.g., change score at week 6) , but is otherwise completely
random.

I more powerful in case of MCAR.
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The MMRM model
Model for the outcome “change score” at the j-th visit (j=1 for visit at week 6; j=2 for visit at

week 12) of the i-th patient:

Yij = µ+ xiβ1 + zjβ2 + uiβ3 + xi · zjβ4 + ui · zjβ5 + εij

with

εij ∼ N

([
0
0

]
,

[
σ2

1 ρσ2σ1
ρσ2σ1 σ2

2

])

I xi: baseline score of the i-th patient minus 10 (the “average” baseline score).
I zj : indicates the week, equal 1 if j=1 (week 6), 0 if j=2 (week 12)
I ui: indicates the arm, equal 1 if i-th patient randomized to

“Experimental” arm, 0 if randomized to “Standard of Care”.

I Observations from different patients are assumed to be independent.
I The name “MMRM” is because this model can is an extension

of the random effect/mixed model which assumes σ1 = σ2 = σT .
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R code:
library(LMMstar)
lmmfit <- lmm(score~baseline*visit + trt*visit, repetition = ~visit|id,

structure = "UN", data = long)
summary(lmmfit)

Output (partial):
Residual variance-covariance: unstructured

- correlation structure: ~0 + visit
2 1

2 1.000 0.627
1 0.627 1.000

- variance structure: ~visit
standard.deviation ratio

sigma.2 2.25 1.000
sigma.1 2.04 0.908

Fixed effects: score ~ baseline * visit + trt * visit

estimate se df lower upper p.value
(Intercept) 0.226 0.258 152.5 -0.283 0.735 0.38236
baseline -0.395 0.072 154.2 -0.537 -0.252 < 1e-04 ***
visit1 -0.083 0.216 147 -0.51 0.343 0.69972
trtExp 0.984 0.364 153 0.265 1.703 0.00766 **
baseline:visit1 0.157 0.061 148.9 0.036 0.277 0.01099 *
visit1:trtExp -0.497 0.305 147.3 -1.099 0.105 0.10513
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Parameters interpretation (reference group: trt=SoC, visit=2 (12 weeks) and baseline score - 10=0)

I µ: estimated as 0.226, is the mean change score at 12 weeks for a patient randomized to
“SoC”, with baseline score=10.

I β1: estimated as -0.395, is the mean change in outcome (change score at 12 weeks) when
comparing two patients of the same arm, one with a baseline score one unit larger than the
other.

I β2: estimated as -0.083, is the mean difference between the change score at week 6 and at
week 12, for a patient of baseline score=10 and randomized to “SoC”.

I β3: estimated as 0.984, is the mean difference in outcome (change score at 12 weeks) for a
patient randomized to “Exp” as compared to a patient randomized to “SoC”, when both
patient have the same baseline score (or “in average”, due to randomization).

I β4: estimated as 0.157, is a difference of differences in mean. In short, the difference β1
becomes β1 + β4 when comparing change scores at week 6 instead of change scores at
week 12. It is just to let the data speak freely and model a possibly different association
between the baseline score and the change scores at 6 and 12 weeks.

I β5: estimated as -0.497, is a difference of differences in mean. In short, the difference β2
becomes β2 + β5 for a patient randomized to “Exp”. It is just to let the data speak freely
and model possibly different treatment effects on the change scores at 6 and 12 weeks.

I σ1: estimated as 2.04, is the standard deviation of the “unexplained” variability of the
change score at 6 weeks (i.e., standard deviation of error term εi1 ; unexplained because neither explained by the
treatment nor by the baseline score; prediction interval is “estimated mean” ±1.96 · σ1 ; see plot on next slides).

I σ2: estimated as 2.25, same interpretation as for σ1, but for the change score at 12 weeks.
I ρ: estimated as 0.627, is the correlation between the change score of the same patient at

6 and 12 weeks (see plot on next slide).
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How does the MMRM handle missing data? (1/2)
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I The lines show the estimated average change score at 12 weeks for a patient of baseline
score=10 (the average value), for both arms (lines would be shifted up or down for other baseline scores).

I The slope (assumed to be the same in the two groups) is the estimated value of ρ · σ2/σ1
(if σ2 ≈ σ1 , then slope ≈ ρ, i.e., the correlation between the change score of the same patient at 6 and 12 weeks)

I The change score at week 6 of the 7 patients with missing values for the change score at
week 12 (but no missing value at week 6) are shown by “ticks” on the x-axis.43 / 46
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How does the MMRM handle missing data? (1/2)
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I Shown are 68% and 95% prediction intervals for the change score at week 12, given an observed value of the change score at
week 6 and baseline score=10, in the standard of care arm (intervals would be shifted up or down for other baseline values and/or
treatment arm).

I Implicitly, the MMRM “guesses” the likely values of the missing scores at 12 weeks, given the available information at baseline
and week 6. Because the “guesses” use this information, the results will be robust to missingness mechanisms that depend on
baseline score and change score at week 6, which is more realistic than assuming that it depends only on what is observed at
baseline (which is what the complete case analysis using ANCOVA assumes). This will also typically lead to power gains, when
data are MCAR. This is intuitive. E.g., if correlation ρ ≈ 1, then knowing the change score at week 6 is almost as good
as knowing it at week 12, so not much loss of information hence not much loss of power.44 / 46
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Why are MMRM commonly used?

I Most modeling assumptions are not so important for the analysis of
(sufficiently large) randomized data.

I E.g., the assumption that the error terms are normally distributed isn’t important
unless sample sizes are small. Linear mixed models are highly robust due to the
central limit theorem.

I The MAR assumption is often more realistic than the MCAR assumption.
The MAR assumption is sufficient3 to avoid bias and it is difficult to use
another modeling approach without assuming MAR (at least a “simple” alternative;

complementary sensitivity analyses can be useful).

I User-friendly software exist.

I Many (reliable) guidelines and textbooks recommend MMRM as a good
“default choice” in many contexts. (E.g., Mallinckrod et (2008), “Recommendations for the Primary

Analysis of Continuous Endpoints in Longitudinal Clinical Trials,” Drug Information Journal, 42, 303–319.)

3Precisely, it is sufficient under “correct” model specification.
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Would you like to learn more?

Statistical analysis of repeated measurements and clustered data

I Ph.D. course running each year in May. Room for 78 students.
I Open webpage at https://absalon.ku.dk/courses/47665.
I Offers DIY guidance for most commonly used study designs.
I We plan to make new video of the lectures in 2025.

Content:
I Linear mixed models for randomized and observational follow-up studies,

crossover studies, reproducibility studies, and cluster RCTs.
I Generalized linear mixed models and generalized estimating equations

(GEE) for non-normal data with focus on binary data.
I Handling of missing data with emphasis on randomized trials.
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