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u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f b i o s t a t i s t i c s

Outline/Intended Learning Outcomes (ILOs)
Preliminaries

ILO: calculate 95% CIs for population proportions
ILO: distinguish between exact and approximate (asymptotic) 95% CIs

Group comparison
ILO: to define a suitable association measure and compute its 95% CI
ILO: to (correctly) use the χ2 test and Fisher’s test

Sample size and power calculation
ILO: to identify why and how to make power and sample size calculations
ILO: to analyse their strengths and limitations

Confounding
ILO: to exemplify confounding and its potential to be misleading
ILO: to name two commonly used remedies

Cohort vs case-control study
ILO: to differentiate the cohort and case-control designs
ILO: to restate which association measure(s) can be used for each design

Screening: jargon
ILO: to recognize some jargon

Paired binary data (if time allows)
ILO: to exemplify paired binary data
ILO: to calculate appropriate 95%-CI and p-values
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u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f b i o s t a t i s t i c s

Binary outcome

Y =
{

1 event / positive / disease
0 no event / negative / non-disease

Parameters
▶ Prevalence: proportion of the population with event at fixed time

point.
How many have the disease right now?

▶ Risk: probability that event occurs in given time period:
How likely will a subject acquire the disease within 1-year?
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u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f b i o s t a t i s t i c s

Statistical inference

Estimating risks and prevalence

p̂ = Relative frequency = Number of events
Number of subjects = x

n

Confidence limits: normal approximation (“large” n1)[
p̂ − 1.96

√
p̂(1 − p̂)

n
; p̂ + 1.96

√
p̂(1 − p̂)

n

]

Confidence limits: “exact” (any n)

binom.test(x,n)

1rule of thumb: when both x ≥ 5 and n − x ≥ 5.
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u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f b i o s t a t i s t i c s

Exact confidence intervals

Exact: No approximation.
Example:
▶ x = 7 (number of events)
▶ n = 43 (number of subjects)

→ p̂ = 7/43 = 16.3%
We want to be sure at 95% that the true value falls inside the confidence
interval [pL; pU ]
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Exact confidence intervals
Exact: No approximation.
Example:
▶ x = 7 (number of events)
▶ n = 43 (number of subjects)

→ p̂ = 7/43 = 16.3%
We want to be sure at 95% that the true value falls inside the confidence
interval [pL; pU ]

To obtain the exact confidence interval, we look for:
pU s.t.P(X ≤ 7) = 0.025
pL s.t.P(X ≥ 7) = 0.025

Binomial Distribution: probability of having x success among n tries,
knowing that the probability of success is p

P(X ≤ x) =
x∑

i=0

(
n

i

)
pi(1 − p)n−i
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Exact confidence intervals

Exact: No approximation.
Example:
▶ x = 7 (number of events)
▶ n = 43 (number of subjects)

→ p̂ = 7/43 = 16.3%
We want to be sure at 95% that the true value falls inside the confidence
interval [pL; pU ]

We create a sequence of possible p and we look for p∗ that solves

P(X ≤ 7) = 0.025

and p
′∗ that solves

P(X ≥ 7) = 0.025
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u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f b i o s t a t i s t i c s

Exact confidence intervals (computation/intuition)

▶ x = 7 and n = 43 leads to p̂ = 16.3% and 95% CI= [6.8; 30.7].
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Exact confidence intervals (computation/intuition)

x (out of n=43)

P
(X

=
x)

=
  43 x

  p
x (1

−
p)

(4
3−

x)
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0.
12

0% 16.3% 45% 69.8% 100%

P(X ≤ 7) 0.001<

What about p=45% ? Unlikely.

▶ x = 7 and n = 43 leads to p̂ = 16.3% and 95% CI= [6.8; 30.7].
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Exact confidence intervals (computation/intuition)

x (out of n=43)

P
(X

=
x)

=
  43 x

  p
x (1

−
p)

(4
3−

x)
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P(X ≤ 7) 0.006=

What about p=35% ? Unlikely.

▶ x = 7 and n = 43 leads to p̂ = 16.3% and 95% CI= [6.8; 30.7].
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Exact confidence intervals (computation/intuition)

x (out of n=43)

P
(X

=
x)

=
  43 x

  p
x (1

−
p)

(4
3−

x)

0 7 10 20 30 43

0.
00

0.
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0.
04

0.
06

0.
08

0.
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0.
12

0% 16.3% 30.7% 46.5% 69.8% 100%

P(X ≤ 7) 0.025=

What about p=30.7% ? NOT Unlikely!

▶ x = 7 and n = 43 leads to p̂ = 16.3% and 95% CI= [6.8; 30.7].
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Exact confidence intervals (computation/intuition)

x (out of n=43)
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What about p=3% ? Unlikely.

▶ x = 7 and n = 43 leads to p̂ = 16.3% and 95% CI= [6.8; 30.7].
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Exact confidence intervals (computation/intuition)

x (out of n=43)

P
(X

=
x)

=
  43 x

  p
x (1

−
p)

(4
3−

x)
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P(X ≥ 7) 0.005=

What about p=5% ? Unlikely.

▶ x = 7 and n = 43 leads to p̂ = 16.3% and 95% CI= [6.8; 30.7].
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Exact confidence intervals (computation/intuition)

x (out of n=43)

P
(X

=
x)

=
  43 x

  p
x (1
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P(X ≥ 7) 0.013=

What about p=6% ? Unlikely.

▶ x = 7 and n = 43 leads to p̂ = 16.3% and 95% CI= [6.8; 30.7].
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Exact confidence intervals (computation/intuition)

x (out of n=43)

P
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x)

=
  43 x
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x (1
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0% 6.8% 16.3% 46.5% 69.8% 100%

P(X ≥ 7) 0.025=

What about p=6.8% ? NOT Unlikely!

▶ x = 7 and n = 43 leads to p̂ = 16.3% and 95% CI= [6.8; 30.7].
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u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f b i o s t a t i s t i c s

Outline/Intended Learning Outcomes (ILOs)
Preliminaries

ILO: calculate 95% CIs for population proportions
ILO: distinguish between exact and approximate (asymptotic) 95% CIs

Group comparison
ILO: to define a suitable association measure and compute its 95% CI
ILO: to (correctly) use the χ2 test and Fisher’s test

Sample size and power calculation
ILO: to identify why and how to make power and sample size calculations
ILO: to analyse their strengths and limitations

Confounding
ILO: to exemplify confounding and its potential to be misleading
ILO: to name two commonly used remedies

Cohort vs case-control study
ILO: to differentiate the cohort and case-control designs
ILO: to restate which association measure(s) can be used for each design

Screening: jargon
ILO: to recognize some jargon

Paired binary data (if time allows)
ILO: to exemplify paired binary data
ILO: to calculate appropriate 95%-CI and p-values
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u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f b i o s t a t i s t i c s

Case: clinical trial on Dalteparin 3

Data: n = 85 diabetic patients with peripheral
arterial occlusive disease and chronic foot
ulcers, randmomized (double-blind) to:
▶ Placebo (n = 42)
▶ Dalteparin (n = 43)

Outcome:
Category 2 Label
intact skin healed
decreased ulcer area ≥ 50% improved
increased ulcer area ≥ 50% impaired
decreased or increased ulcer area < 50% unchanged
amputation above/below ankle amputation

Research question: Does Dalteparin improve the outcome, when injected once
daily until ulcer healing or for a maximum of 6 months?

2mutually exclusive.
3Kalani et al. Diabetes Care 26: 2575-2580, 2003
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u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f b i o s t a t i s t i c s

Frequency table

Dalteparin Placebo

Healed 14 (33%) 9 (21%)

Improved 15 (35%) 11 (26%)

Unchanged 7 (16%) 9 (21%)

Impaired 5 (12%) 5 (12%)

Amputation 2 (5%) 8 (19%)

total (100%) 43 42

▶ Summarizes the outcome data.
▶ Prepare/Format data for analyzes.
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u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f b i o s t a t i s t i c s

Barplot (frequencies)
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u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f b i o s t a t i s t i c s

Barplot (proportions4)
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4often better when sample sizes are not equal in both groups.
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u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f b i o s t a t i s t i c s

Here we pool the outcome categories as follows

Category Dichotomized outcome

intact skin
better

ulcer area decreased ≥ 50%

decreased or increased ulcer area < 50%

worseincreased ulcer area ≥ 50%

amputation above/below ankle

Important: this dichotomization should be prespecified (i.e. decision
made before seeing the data). 5

5For an illustration of why prespecification matters, see e.g. Austin & Goldwasser. "Pisces did not have increased heart
failure: data-driven comparisons of binary proportions between levels of a categorical variable can result in incorrect statistical significance
levels." Journal of clinical epidemiology 61.3 (2008): 295-300.
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u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f b i o s t a t i s t i c s

Group comparison
Placebo group

Risk of worse outcome = 22
42 = p̂1

Dalteparin group

Risk of worse outcome = 14
43 = p̂2

Association measures6

Relative risk: p̂1

p̂2
Odds ratio:

p̂1

1−p̂1

p̂2

1−p̂2

Risk difference: p̂1 − p̂2

6whenever possible, we prefer using risk ratios or risk differences to odds ratios.
They are often better understood and easier to communicate!
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u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f b i o s t a t i s t i c s

2x2 contingency table

Response

yes no total

Exposure
yes a b a+b

no c d c+d

total a+c b+d N

Risk estimates

p̂1 = a

a + b
p̂2 = c

c + d
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u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f b i o s t a t i s t i c s

Relative risk

R̂R = a/(a + b)
c/(c + d)

Response

yes no total

Exposure
yes a b a+b

no c d c+d

total a+c b+d N

Standard error of log(R̂R) and confidence interval of RR 7

σ̂ =
√

1
a

− 1
a + b

+ 1
c

− 1
c + d

log(RR) : CI95% =
[
log(R̂R) − 1.96 σ̂) ; log(R̂R) + 1.96 σ̂)

]
RR : CI95% =

[
R̂R · exp(−1.96 σ̂) ; R̂R · exp(1.96 σ̂)

]
7This method is “good enough” with “large enough” sample sizes.
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u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f b i o s t a t i s t i c s

Relative risk: placebo versus dalteparin

R̂R = 22/42
14/43 = 1.609

Outcome

worse better total

Treatment
placebo 22 20 42

dalteparin 14 29 43

total 36 49 85

Standard error of log(R̂R) and confidence interval

σ̂ =
√

1
22 − 1

42 + 1
14 − 1

43 = 0.264

CI95% = [0.959; 2.7]
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Relative risk: placebo versus dalteparin

R̂R = 22/42
14/43 = 1.609

Outcome

worse better total

Treatment
placebo 22 20 42

dalteparin 14 29 43

total 36 49 85

CI95% = [0.959; 2.7] (does include 1)

The risk in the placebo group is 1.6 times higher then the risk in the
dalteparin group and the risk among patients on placebo could be
between 0.9 times lower and 2.7 higher compared with patients on
dalteparin.
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u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f b i o s t a t i s t i c s

Relative risk: placebo versus dalteparin

R̂R = 22/42
14/43 = 1.609

Outcome

worse better total

Treatment
placebo 22 20 42

dalteparin 14 29 43

total 36 49 85

1/1.609 = 0.625, CI95% = [0.37; 1.04]

The risk in the dalteparin group is reduced by a factor 0.622 compared to
the placebo group....
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u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f b i o s t a t i s t i c s

Risk difference

∆̂ = a

a + b
− c

c + d

Response

yes no total

Exposure
yes a b a+b

no c d c+d

total a+c b+d N

Standard error of ∆̂ and confidence interval 8

σ̂ =
√

ab/(a + b)3 + cd/(c + d)3

CI95% =
[
∆̂ − 1.96 σ̂ ; ∆̂ − 1.96 σ̂

]

8This method is “good enough” with “large enough” sample sizes.
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u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f b i o s t a t i s t i c s

Risk difference: placebo versus dalteparin

∆̂ = 22
42 − 14

43 = 0.198

Outcome

worse better total

Treatment
placebo 22 20 42

dalteparin 14 29 43

total 36 49 85
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Risk difference: placebo versus dalteparin

∆̂ = 22
42 − 14

43 = 0.198

Outcome

worse better total

Treatment
placebo 22 20 42

dalteparin 14 29 43

total 36 49 85

Standard error of ∆̂ and confidence interval

σ̂ =
√

22 · 20/423 + 14 · 29/433 = 0.105

CI95% = [−0.008 ; 0.404]
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Risk difference: placebo versus dalteparin

∆̂ = 22
42 − 14

43 = 0.198

Outcome

worse better total

Treatment
placebo 22 20 42

dalteparin 14 29 43

total 36 49 85

CI95% = [−0.008 ; 0.404] (does include 0)

The risk among patients on placebo is 19.8 % higher compared to risk in
the deltaparin group, the risk in the placebo group could be between
0.8% lower and 40.4% higher compared with patients on dalteparin.
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u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f b i o s t a t i s t i c s

Odds Ratio (OR)

Odds: ratio of the probability of success by probability of failure

odds = p/(1 − p) ,

and the risk can be computed back from the odds, p = odds/(1 + odds).
Odds are difficult to interpret, but if risks are small, then risks ≈ odds.

The Odds ratio (OR) is defined as the ratio of the odds

OR = odds1

odds2
= p1/(1 − p1)

p2/(1 − p2) .

Concept needed for
▶ case-control studies (stay tuned!)
▶ logistic regression (next week)
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u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f b i o s t a t i s t i c s

OR = odds1

odds2
= p1/(1 − p1)

p2/(1 − p2) .

OR are difficult to interpret, but
from the equation...

RR = OR{
1 − p2

}
+ p2OR

,

...we can first conclude:

▶ OR > 1 ⇔ RR > 1
▶ OR = 1 ⇔ RR = 1
▶ OR < 1 ⇔ RR < 1

...and further conclude that

▶ the OR is sufficient to deduce whether a risk increases or decreases.
▶ if p2 is small (e.g. rare disease), then OR ≈ RR.
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u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f b i o s t a t i s t i c s

When is OR ≈ RR ?
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u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f b i o s t a t i s t i c s

Odds ratio

ÔR =
a/(a+b)
b/(a+b)
c/(c+d)
d/(c+d)

= a · d

b · c

Response

yes no total

Exposure
yes a b a+b

no c d c+d

total a+c b+d N

Standard error of log(ÔR) and confidence interval9

σ̂ =
√

1
a

+ 1
b

+ 1
c

+ 1
d

CI95% =
[
ÔR · exp(−1.96 σ̂); ÔR · exp(1.96 σ̂)

]
9This method is “good enough” with “large enough” sample sizes.
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u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f b i o s t a t i s t i c s

Odds ratio: placebo versus dalteparin

ÔR = 22 · 29
14 · 20 = 2.279

Outcome

worse better total

Treatment
placebo 22 20 42

dalteparin 14 29 43

total 36 49 85
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Odds ratio: placebo versus dalteparin

ÔR = 22 · 29
14 · 20 = 2.279

Outcome

worse better total

Treatment
placebo 22 20 42

dalteparin 14 29 43

total 36 49 85

Standard error of log(ÔR) and confidence interval

σ̂ =
√

1
22 + 1

20 + 1
14 + 1

29 = 0.449

CI95% = [0.946; 5.491]
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u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f b i o s t a t i s t i c s

Odds ratio: placebo versus dalteparin

ÔR = 22 · 29
14 · 20 = 2.279

Outcome

worse better total

Treatment
placebo 22 20 42

dalteparin 14 29 43

total 36 49 85

CI95% = [0.946; 5.491] (does include 1)

The placebo group has 2.3 times higher odds of experiencing the worse
outcome compared to the dalteparin group.

23 / 62



u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f b i o s t a t i s t i c s

Reporting results

The association measures of group 1 (placebo) versus group 2
(Dalteparin) are estimated as

RR = 1.609, RD = 0.198

Equivalent statements:
▶ The risk in group 1 is 1.609 times higher than in group 2.
▶ The risk in group 1 is 60.9% higher than in group 2. 10

▶ The Risk in group 1 is increased by 19.8% points

Note: RR shows relative change, which depends on baseline risk. RD shows
absolute change, which is more informative for public health decisions.
Percentage points increase is different then saying x% higher. The latter refers
to the proportional growth relative to the starting percentage.

10because 1.609 - 1 =0.609
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RR = 1.609, RD = 0.198

Equivalent statements:
▶ The risk in group 1 is 1.609 times higher than in group 2.
▶ The risk in group 1 is 60.9% higher than in group 2. 10

▶ The Risk in group 1 is increased by 19.8% points
Note: RR shows relative change, which depends on baseline risk. RD shows
absolute change, which is more informative for public health decisions.
Percentage points increase is different then saying x% higher. The latter refers
to the proportional growth relative to the starting percentage.

10because 1.609 - 1 =0.609
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When to use?

Metric When to use it Interpretation
Risk Differ-
ence (RD)

to measure the ab-
solute impact of an
exposure on an out-
come

increase/decrease in
percentage points

Relative Risk
(RR)

Cohort Studies, to
assess how many
times more likely
one group is to ex-
perience the event,
rare event

relative increase/de-
crease, depend on
the baseline risk

Odds Ratio
(OR)

Case-control studies,
logistic regression

compare odds in-
stead of risk
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Testing independence in a randomized clinical trial

Null hypothesis H0: the treatment has no effect.

Prob(worse given dalteparin) = Prob(worse given placebo)
⇔ p1 − p2 = 0 (Difference =0)

⇔ p1

p2
= 1 (Relative risk =1)

⇔ p1/(1 − p1)
p2/(1 − p2) = 1 (Odds ratio =1)

Popular tests of independence between the treatment group and the
outcome groups:
▶ χ2 test (normal approximation)11

▶ Fisher’s exact test: recommended as the default choice! 12

11This method is “good enough” with “large enough” sample sizes.
12Recommended because: Why approximate when you can get the exact?
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The χ2 test statistic

χ2 =
∑ (observed counts − expected counts)2

expected counts
Observed counts

Response

yes no total

Exposure
yes a b a+b

no c d c+d

total a+c b+d N

Expected counts
Response

yes no total

Exposure
yes E11 E12 a+b

no E21 E22 c+d

total a+c b+d N

▶ The expected counts are calculated under the null hypothesis of independence
between exposure and response

▶ in a population of size n, for a given risk of event p, we expect to see (on
average) np events in this population

Example: Expected counts for Exposed=yes, Response=yes (E11):

p = P(Exposed = yes, Response = yes)=P(Exposed = yes) · P(Response = yes)

p =
a + b

N
·

a + c

N

→ E11 = N ·
a + b

N
·

a + c

N
=

(a + b) · (a + c)
N
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The χ2 test statistic

χ2 =
∑ (observed counts − expected counts)2

expected counts

Observed counts
Response

yes no total

Exposure
yes a b a+b

no c d c+d

total a+c b+d N

Expected counts

Response

yes no total

Exposure
yes (a+b)(a+c)/N (a+b)(b+d)/N a+b

no (c+d)(a+c)/N (c+d)(b+d)/N c+d

total a+c b+d N

▶ under the null hypothesis the groups are identical, hence
data can be merged into a single group

▶ in a population of size n, for a given risk of event p, we
expect to see (on average) np events in this population

under the null hypothesis.

Rule of thumb: a valid
analysis requires that all
expected counts are ≥ 5.
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Test results

Null hypothesis:
dalteparin treatment has no effect for chronic foot ulcers.

Test p-value
Fisher’s exact test 0.0808
Pearson’s χ2 test 0.0644
Pearson’s χ2 test with Yates’ continuity correction13 0.1032

R code:

tab <- rbind(c(22,20),c(14,29))
fisher.test(tab) # always works (default choice!)
chisq.test(tab,correct=FALSE) # fine with large samples
chisq.test(tab,correct=TRUE) # no longer useful

13Expected to be more precise than the usual Pearson’s χ2 test when the sample size is very
small. NOT RECOMMENDED, with small sample sizes, use Fisher’s test instead.
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A note of caution

Because the (simple) formulas for the 95% CI (of the previous slides) are based
on large sample size approximations, they are not necessarily consistent with
the result of the Fisher’s exact test, especially with “very small” sample sizes.

Example:
event no event

exposed 5 12
non-exposed 8 3

▶ p̂1 = 8/11 = 0.73, p̂2 = 5/17 = 0.29.
▶ ∆̂= 0.43 (0.09 ; 0.77)
▶ R̂R= 2.47 (1.09 ; 5.62)
▶ ÔR= 6.40 (1.18 ; 34.61)
▶ p-values from Fisher’s exact test and Pearson’s χ2 (with and without

Yates correction) are 0.051, 0.063 and 0.025, respectively.
Here the confidence intervals show a significant result, but not Fisher’s test.
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Advanced methods and software14 are available to avoid running into this
kind of inconsistency between hypothesis test and confidence intervals.

Fortunately, it is rare that we run into this problem....
and even rarer that it matters for the interpretation.

14see R package exact2x2 and references in the help documentation.
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Larger contigency tables (1/2)
If the table is not 2x2 but, e.g., 3x4 or 2x4, the χ2 test and Fisher’s exact
test are testing an “ANOVA-like” null hypothesis similarly to what the
F-test does to compare several means.

First example:

underweight normal overweight obese
no SCD 9 51 20 8
SCD 23 61 3 1

R code:

fisher.test(table(d$SCD,d$BMIgroup))

returns a p-value <0.001, for the null hypothesis

H0: “the prevalence of SCD is the same in all groups of BMI”

that is, “no association between BMI group and SCD”.
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Outline/Intended Learning Outcomes (ILOs)
Preliminaries

ILO: calculate 95% CIs for population proportions
ILO: distinguish between exact and approximate (asymptotic) 95% CIs

Group comparison
ILO: to define a suitable association measure and compute its 95% CI
ILO: to (correctly) use the χ2 test and Fisher’s test

Sample size and power calculation
ILO: to identify why and how to make power and sample size calculations
ILO: to analyse their strengths and limitations

Confounding
ILO: to exemplify confounding and its potential to be misleading
ILO: to name two commonly used remedies

Cohort vs case-control study
ILO: to differentiate the cohort and case-control designs
ILO: to restate which association measure(s) can be used for each design

Screening: jargon
ILO: to recognize some jargon

Paired binary data (if time allows)
ILO: to exemplify paired binary data
ILO: to calculate appropriate 95%-CI and p-values
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Sample size and power calculation

Sample size and power calculation is mostly useful for designing clinical trials to
determine the appropriate sample size needed to detect the expected effect size
with sufficient statistical power.
However, this could be a useful tool in observational studies to understand
what is possible to achieve with the available data.

Textbook formula (“large n” approximation)

n =

{
zα/2

√
2p̄(1 − p̄) + zβ

√
p1(1 − p1) + p2(1 − p2)

}2

(p1 − p2)2

▶ zγ is the γ-quantile of a standard normal distribution 15

▶ p̄ = (p1 + p2)/2.
▶ n: number of observations in each group.

15zα/2 = −1.96 for α = 5% and zβ = 0.84 is 1.28 for 1 − β = 80%
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When calculating the sample size we need to specify:
▶ expected p1, p2 → expected size effect
▶ the desired power (1 − β) and Type I error (α)

Reverse the formula to compute:
▶ Power for a given sample size: for expected values of p1 and p2 and

desired n and α.
▶ Least detectable difference (or ratio): δ = p1 − p2 (or r = p1/p2)

for given n, expected p1, desired α and minimal power (1 − β).
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Sample size calculation
Subjects needed to detect significant risk difference with a power of 80%,
if the risks in the two groups are 25% and 50%.

Standard software can be used, e.g. R:
power.prop.test(p1 = 0.25, p2 = 0.5, power=0.8)

Two-sample comparison of proportions power calculation

n = 57.67344
p1 = 0.25
p2 = 0.5

sig.level = 0.05
power = 0.8

alternative = two.sided

NOTE: n is number in *each* group

● ● ●
●

●
●

●

●

●

●

●

●

●

p1

n

0.10 0.15 0.20 0.25 0.30 0.35 0.40

20

58

150

300

400

▶ n = 58 subjects needed in each group (i.e. 116 in total) to detect
significant risk difference with a power of 80% and α = 0.05.

▶ at fixed p2 = 0.5, for larger p1, namely decreasing the risk difference, we
observe a fast increase in the needed sample size.
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Power calculation
Example: an initial calculation suggests n = 58 subjects per group (i.e. 116 in total),
for detecting a difference of 25% survival between the two groups, assuming 50%
survival in the placebo group (with 80% power). But what does the power become if
we were too optimistic with the expected treatment effect? E.g. what if the difference
in survival probability is only 15%?

power.prop.test(n=58, p1 = 0.35, p2 = 0.5)

Two-sample comparison of proportions power calculation

n = 58
p1 = 0.35
p2 = 0.5

sig.level = 0.05
power = 0.3707966

alternative = two.sided

NOTE: n is number in *each* group

● ● ●
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▶ power = 38% enrolling 116 individuals (58 foe each group) and 15%
increase in the survival probability.
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Least detectable difference
Example: My grant can finance a total sample size of n = 150 (i.e. 75 per group).
What is the smallest survival difference that I can hope to show with a decent power
(e.g. 80%), if I expect 80% survival in the “standard of care” (i.e. control) group?
And if I expect 85% in the “standard of care” group?

power.prop.test(n=75, p1 = 0.8, power=0.8)

Two-sample comparison of proportions power calculation

n = 75
p1 = 0.8
p2 = 0.950095

sig.level = 0.05
power = 0.8

alternative = two.sided

NOTE: n is number in *each* group
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Note: you need to supply a value for p1, not p2, otherwise the software is looking for a lower risk
and it returns 0.72.
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One power/sample size calculation is often not enough.
It is good to understand how the needed sample size and power are
affected by varying p1 and p2

Discussions on
▶ Budget and resources allocations
▶ Ethical implications
▶ Is it worth continuing with the study knowing that we have small

power?
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Outline/Intended Learning Outcomes (ILOs)
Preliminaries

ILO: calculate 95% CIs for population proportions
ILO: distinguish between exact and approximate (asymptotic) 95% CIs

Group comparison
ILO: to define a suitable association measure and compute its 95% CI
ILO: to (correctly) use the χ2 test and Fisher’s test

Sample size and power calculation
ILO: to identify why and how to make power and sample size calculations
ILO: to analyse their strengths and limitations

Confounding
ILO: to exemplify confounding and its potential to be misleading
ILO: to name two commonly used remedies

Cohort vs case-control study
ILO: to differentiate the cohort and case-control designs
ILO: to restate which association measure(s) can be used for each design

Screening: jargon
ILO: to recognize some jargon

Paired binary data (if time allows)
ILO: to exemplify paired binary data
ILO: to calculate appropriate 95%-CI and p-values
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Confounding

“A simple definition of confounding is the confusion of effects. This
definition implies that the effect of the exposure is mixed with the effect
of another variable, leading to a bias.”16

Failing to take a confounding variable into account can lead to a false
conclusion that the outcome are in a causal relationship with the
predictor variable.

Confounding variables are typically encountered in observational studies,
but not in “ideal” randomized experiments.

16Rothman (2012), Epidemiology: an introduction.
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Confounding example (birth order and risk of Down syndrome 17)
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17Stark and Mantel (1966), J. Natl. Cancer Inst. 37(5) 687–698.
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When can association mean causation? (1/2)

We usually say that (statistical) association does not imply causation
▶ Association: when changes in one variable are observed alongside

changes in another variable
▶ Causation: changes in one variable directly cause changes in another

variable.

44 / 62



u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f b i o s t a t i s t i c s

When can association mean causation? (1/2)

We usually say that (statistical) association does not imply causation
▶ Association: when changes in one variable are observed alongside

changes in another variable
▶ Causation: changes in one variable directly cause changes in another

variable.

▶ Example:
▶ Clear association between Being Danish and enjoying licorice-flavored

treats. However, being Danish not cause an individual to like licorice,
nor does liking licorice cause someone to be Danish.
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When can association mean causation? (1/2)

We usually say that (statistical) association does not imply causation
▶ Association: when changes in one variable are observed alongside

changes in another variable
▶ Causation: changes in one variable directly cause changes in another

variable.

In presence of confounding we might not be able to identify the true
causal effect.

We need (among others) that the groups we are comparing are similar
with respect to everything except the treatment under study
(exchangeability assumption).

When we succeed to correctly control for confounding, conditional
exchangeability holds and association can be interpreted as causation.
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When can association mean causation? (2/2)

An example where association implies causation is “ideal” randomized
experiments.
The randomization ensures that the two groups that we compare are
similar with respect to everything except the intervention / treatment
under study. Hence, if a difference in outcome is observed between the
two groups, then we can be confident that this is the consequence of this
unique difference in exposure / treatment.

In non-randomized (or non “ideally” randomized) experiments the two
compared groups will usually differ with respect to more than one
characteristic. This generates multiple plausible explanations for the
observation of the difference in outcome – some causal and some non
causal.
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Adjusted analysis

Suppose that in addition to the outcome and the exposure group a
categorical confounder variable (e.g. gender) is measured for each
individual.

▶ Subgroup analysis
Analyze 2x2 contingency tables separately in each strata defined by the
confounder variable.

▶ Logistic regression (next week)
To compute a “weighted” average of the subgroup analyses, assuming
that the exposure-outcome association is the same in all subgroups.18.

18Applicable also with continuous confounders.
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Group comparison
ILO: to define a suitable association measure and compute its 95% CI
ILO: to (correctly) use the χ2 test and Fisher’s test

Sample size and power calculation
ILO: to identify why and how to make power and sample size calculations
ILO: to analyse their strengths and limitations

Confounding
ILO: to exemplify confounding and its potential to be misleading
ILO: to name two commonly used remedies

Cohort vs case-control study
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ILO: to restate which association measure(s) can be used for each design
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Observational study design

In a prospective cohort study, an outcome or disease-free study
population is first identified by an exposure (e.g., onset of diabetes) or
other inclusion criteria and followed in time until the disease or outcome
of interest occurs.

Case-control studies identify subjects by outcome status at the outset of
the investigation. First, subjects with outcome are identified and
classified as cases. For each case a given number of controls (e.g., 4) are
selected. A candidate control is a subject without the outcome but from
the same source population.
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Cohort study: example from Egerup et al. (2020) 19

Research question: How larger is the 1-year risk of
infection (leading to an hospitalization) among
newborns of kidney-transplanted women?

Infection within first year of life

yes no total

Kidney-
transplanted
mother

yes 26 98 124

no 133 1098 1231

total 159 1196 1355

The estimated risk ratio is R̂R = 1.94 (CI95% = [1.33; 2.83]).

19Egerup et al. "Increased risk of neonatal complications and infections in children of kidney-transplanted women: A nationwide
controlled cohort study." American Journal of Transplantation (2020).
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Case-control study: example of Frachon et al.20

Research question: Is the use of benfluorex associated with unexplained
mitral regurgitation?

▶ Case study described in the movie “150 Milligrams” (2016)
(The original title in French is “La fille de Brest”)

▶ France’s biggest modern health scandal

20Frachon et al. "Benfluorex and unexplained valvular heart disease: a case-control study." PloS one 5.4 (2010).
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Case-control study: example of Frachon et al.21

“unexplained”

mitral regurgitation

yes no total

Benfluorex
use

yes 19 3 24

no 8 51 59

total 27 54 81

ÔR = 40.4 (CI95% : [9.7; 168])

Risk is defined as the probability (or proportion) of an outcome (such as a
disease) occurring over a certain period in a population at risk. here we do not
have the population at risk, we know the number of cases and the number of
controls (here 2 per case) is defined by the study design.

▶ The statistic R̂R depends also on the ratio between controls and cases
and should not be used for measuring association in case-control studies.

▶ The statistic ÔR works, because it compares the ODDs instead.
21Frachon et al. "Benfluorex and unexplained valvular heart disease: a case-control study." PloS one 5.4 (2010).
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Why does ÔR work? (1/2)

OR = π1/(1 − π1)
π0/(1 − π0)

▶ 97% of the cases are included in the case-control study and 1% of the “non cases” are selected as controls; all included “blinded”
from exposure (i.e. before looking for the information on the exposure).

▶ Connection to notations of previous slides π1 = p1 and π0 = p2 .
▶ E=”exposure”, F=”Fail”, S=”Survive”, D=”Disease”, H=”Healthy”.
▶ source: “Statistical models in Epidemiology”, by Clayton and Hills, page 155.

53 / 62



u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f b i o s t a t i s t i c s

Why does ÔR work? (2/2)

▶ source: “Statistical models in Epidemiology”, by Clayton and Hills, page 156.

ÔR ≈
0.1×π1×0.97

0.1×(1−π1)×0.01
0.9×π0×0.97

0.9×(1−π0)×0.01

= π1/(1 − π1)
π0/(1 − π0)

but

R̂R ≈
0.1×π1×0.97

0.1×π1×0.97 + 0.1×(1−π1)×0.01
0.9×π0×0.97

0.9×π0×0.97 + 0.9×(1−π0)×0.01

= π1/(π1 × 0.97 + (1 − π1) × 0.01)
π0/( π0 × 0.97 + (1 − π0) × 0.01)

̸= π1

π0
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Why does ÔR work? (2/2)
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ILO: to calculate appropriate 95%-CI and p-values
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Medical test / screening: jargon
Y : Outcome (disease status) E.g. prostate cancer

X: Test result (biomarker). E.g. X =
{

1 positive if PSA > 4.0 ng/mL
0 negative if PSA ≤ 4.0 ng/mL

Y = 1 Y = 0
X = 1 True positive False positive
X = 0 False negative True negative

▶ True positive rate (sensitivity): P (X = 1 | Y = 1)
▶ True negative rate (specificity): P (X = 0 | Y = 0)
▶ False positive rate (1-specificity): P (X = 1 | Y = 0)

For a good diagnostic we want high TPR and low FPR.

▶ The positive predictive value: P (Y = 1 | X = 1)
▶ The negative predictive value: P (Y = 0 | X = 0)

They depend on the disease prevalence .
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When do we typically meet paired binary data?

▶ Comparison of diagnostic tests
▶ Example: compare sensitivity (i.e. True Positive Rate) of two diagnostic

tests based on either Method 1 (e.g. Blood culture) or Method 2 (e.g.
PCR: Polymerase Chain Reaction) using the the same blood samples (i.e.
same patients).

▶ Crossover clinical trials
▶ Example: compare two sedatives, w.r.t. proportions of side effects (e.g.

not waking when fire alarm rings), each drug is given to each patient one
evening (two evenings separated by one week). The same patients receive
the two drugs.
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Why does pairing matter?
▶ Comparison of diagnostic tests

▶ Example (cont’): blood samples of “heavily” infected patients are easier to
test positive than those of “mildly” infected patients. Hence, if one test is
positive, the chance that the second test is positive is higher than expected
in average.

▶ Crossover clinical trials
▶ Example (cont’): some people sleep better than others. Some will never

wake no matter what. Others are bad sleepers and will always wake.
Hence, if a subject wakes the first night, the chance that he/she wakes up
the second night is higher than expected in average.

Take home message: we expect less variability between two
observations from the same patient than between two observations from
two different patients. Appropriate statistical analysis will recognize this
smaller variability. Less variability implies less random variation, which
further implies more certainty, that is, narrower 95% CI and smaller
p-values (than if the pairing was “wrongly” ignored).
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How are paired data often presented?

▶ Comparison of diagnostic tests22

▶ Example (cont’):

PCR-test
Negative Positive

BC-test Negative 1 19
Positive 2 2

Remarks:
1. This 2 by 2 table shows the pairing (and the raw data).
2. If the sensitivity of the two diagnostic tests are equally good, we

expect (approx.) the same counts in the “upper right” and “lower
left” cells (based on the correct definition of Positives)

22Example from: Nguyen et al. “Performance of Candida real-time polymerase chain reaction, β-D-glucan assay, and blood cultures
in the diagnosis of invasive candidiasis.” Clinical infectious diseases 54.9 (2012): 1240-1248.
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Which statistical method with paired binary data?

▶ For p-value computation, we often use a McNemar’s test
▶ Modern software can compute an “exact” version of the McNemar’s

test.
▶ An exact confidence interval can be computed for each of the two

compared specificities (as seen in the first slides of the lecture)23

23Large sample (i.e. “approximate”) confidence intervals can be computed for the difference in proportions ( not shown in this
course), but no “exact” method exists.
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Which R code and conclusions?

library(exact2x2) # load a useful package
tab <- rbind(c(1,19),c(2,2)) # 2 by 2 table
mcnemar.exact(tab) # exact McNemar test
binom.test(x=sum(tab[,2]),n=sum(tab)) # sensitivity for PCR-test (95%-CI)
binom.test(x=sum(tab[2,]),n=sum(tab)) # sensitivity for BC-test (95%-CI)

Conclusions:
The sensitivity of the PCR test (88%, 95%-CI=[68,97]) was found
significantly higher than that of the blood culture test (17%,
95%-CI=[5,37]) among patients with deep-seated candidiasis
(p-value<0.001).
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