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Outline/Intended Learning Outcome (ILOs)

Hypothesis testing
ILO: to describe the principles and logic of hypothesis testing

One and two sample tests for continuous responses: t-test
ILO: to identify when, how and why to use a t-test
ILO: to define a p-value and contrast its use with that of a confidence interval

Power and Sample size calculation
ILO: to identify why and how to make power and sample size calculations
ILO: to analyse their strengths and limitations

Multiple testing
ILO: to describe the multiple testing problem and employ basic remedies

Nonparametric test: Wilcoxon
ILO: to contrast pros and cons of Wilcoxon vs t-test
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Case: cow milk data

I Research question:
Should cows be fed with Barley or Lupin, to
produce the best milk?

I Outcome:
protein level of the milk (%) at 12 weeks after
calving.

Statistical aim: provide a yes/no answer about the population
supported by the observed data (sample) while controlling the risks of a
“false finding”, via a Hypothesis test.1

1Note: important complementary information is given by the confidence interval of the effect
size. It will be emphasized shortly.
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Research question and Null hypothesis

I A hypothesis test aims to answer a very precise & specific research
question.

Case: Is there a difference in (population) mean level of protein
between cows fed with lupin and barley, at 12 weeks?

I The null hypothesis H0 of the test should reflect it and state the
opposite of what you aim to prove.

I Scientific hypothesis: there is a difference.
I Null hypothesis: there is no difference.

Choosing the opposite is important to appropriately control the risk
of wrong conclusion.
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Hypothesis testing and risks of false conclusions

Case:
I Type-I error: conclude a difference although it does not exist.
→ False positive finding

I Type-II error: do not conclude to a difference although it exists.
→ False negative finding
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Hypothesis testing and risk control

We want to ensure that the risk of wrongly rejecting the null hypothesis
(α) is small (often 5%), i.e. a small risk of a false scientific finding.

Reasoning: the data need to be convincing enough to support the (new)
research finding.

Limitation: it might be difficult to have enough data to support a (new)
finding (→ power).
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The logic of hypothesis testing

1. Assume that the data have been generated in a world in which the
null hypothesis is true.

2. Under this assumption, calculate how unlikely it is to obtain some
results that contradict the null hypothesis as least as much as
those obtained with your data (i.e., compute the p-value).

3. Reject the null hypothesis if this is unlikely ‘enough’.

I Similar to a proof by contradiction.
I Computation in step 2. depends on the type of observed data.
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Case: cow milk data

Data from n = 25 (Barley)+27 (Lupin) cows:

protein Diet
3.28 lupins
3.04 barley
3.07 barley
2.92 barley
3.29 lupins
3.18 lupins

etc...

Barley Lupin
Mean (SD): 3.43 (0.31) 3.21 (0.27)

I Is the difference observed in the data sample large enough to
conclude to a difference in the population?
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First approach (not optimal for testing)

Comparison of 95% confidence intervals:
I Lupin: [3.11;3.32]
I Barley: [3.30;3.56]

Protein level (%)

●

●
Barley
Lupin

3.0 3.2 3.4 3.6

We cannot conclude on the significance of the difference
(see slides lecture 1).
But the two CI can be interesting to report anyway.
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A better approach

Compute:

I p-value for the difference in mean.
I confidence interval for the difference in mean.
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Two-sample t-test (1/2)

Model assumptions: (1 & 2 are important, 3 not always)
1. The two samples are independent (no pairing).
2. Observations from each sample are independent.
3. Observations are normally distributed.

To test the null hypothesis H0 : µ1 = µ2 , i.e. the population means are
the same in the two populations, we compute the t-statistic.

t = x̄1 − x̄2

s.e.(x̄1 − x̄2)

where the standard error is s.e.(x̄1 − x̄2) =
√
s2

1/n1 + s2
2/n2.

The value t quantifies how large the (sample) difference (x̄1 − x̄2) is
relative to the amount of information provided by the data (s.e.(x̄1 − x̄2))
and is used to compute a p-value.
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Appendix: t-statistic intuition (1/3)
I For given standard deviations s1 and s2 and sample sizes n1 and n2,

the larger the difference in mean x̄1 − x̄2 and the larger the t-statistic
(absolute values).

|x1 − x2| = 0.5
| t | = 1.1

|x1 − x2| = 2.6
| t | = 5.6

I It makes sense: the right plot is more convincing than there is a difference
in mean than the left plot.13 / 63
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Appendix: t-statistic intuition (2/3)
I For given standard deviations s1 and s2 and difference in mean x̄1 − x̄2,

the larger the sample sizes n1 and n2 and the larger the t-statistic
(absolute values).

n1 = 10
n2 = 10
| t | = 1.1

n1 = 40
n2 = 40
| t | = 2.3

I It makes sense: the right plot is more convincing that there is a difference
in mean than the left plot.14 / 63
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Appendix: t-statistic intuition (3/3)
I For given difference in mean x̄1 − x̄2 and sample sizes n1 and n2,

the smaller the standard deviations s1 and s2 and the larger the t-statistic
(absolute values).

s1 = 1
s2 = 1.1
| t | = 1.1

s1 = 0.3
s2 = 0.4
| t | = 3.3

I It makes sense: the right plot is more convincing than there is a difference
in mean than the left plot.15 / 63
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Two-sample t-test (2/2)

The key idea to use the t-statistics is that under the model assumption, it
follows a specific distribution2 whatever the value of the (population)
means (µ1, µ2) and standard deviations (σ1, σ2) in each group.

Hence we can assume µ1 = µ2 and calculate how unlikely it is to obtain
a t value that contradicts the null hypothesis as least as much as that
obtained with your data, that is, we can compute a p-value.

The larger |t| the more the data contradict H0 : µ1 = µ2.

p-value= P(|T | > |t|), where T is a random variable that follows the
t-distribution.

2the t-distribution, aka Student’s distribution, which depends on the two sample sizes n1 and
n2; already encountered in Lecture 1.
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The p-value (1/2)

Informal definition:
The p-value is “the probability of seeing a result as extreme as your
observed result, when the null model is true.” 3

I “result”= test statistic, i.e., a single value that (“cleverly”)
summarizes the data.

I “extreme”= unlikely/unexpected.

Interpretation:
1. If the p-value is small the data are at odds with the null

hypothesis4 and the finding is said to be statistically significant.
2. If the p-value is large, the finding is said to be not statistically

significant.

3Westfall & Henning. Understanding advanced statistical methods. CRC Press, 2013 (page 405).
4 i.e. either the null hypothesis is not true or a very rare event has occurred.
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The p-value (2/2)

Interpretation:
3. We imagine a large number of repetitions of the study with the null

hypothesis being true and define the p-value as the proportion of
these studies which provide less support for the null hypothesis than
the data actually observed.

Recommendations:
I Traditionally the value p=5% has been used to divide “significant”

from “non-significant” results, but good practice is to report the
actual p-value.

I The choice of the threshold to claim significance (often p=5%)
should be prespecified.
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p-value and strength of evidence

The smaller the p-value, the
stronger the evidence against
the null hypothesis.

Figure 8.2 in Kirkwood & Sterne (2003), Essential medical statistics, 2nd edition.
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Case: Two-sample t-test

I x̄1 = 3.43, x̄2 = 3.21
I x̄1 − x̄2 = 0.22
I n1 = 25, n2 = 27
I s1 = 0.31, s2 = 0.27
I s.e.(x̄1 − x̄2) = 0.081
I t = 2.66
I p-value= P(|T | > |t|)=0.011

We conclude that there is a significant difference in mean protein level of
the milk between cows fed with barley and lupin (p=0.011).
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Don’t misinterpret p-values!

Widespread misunderstandings called for clarifications:

I The p-value is not the probability of H0 being true.
“Researchers often wish to turn a p-value into a statement about
the truth of a null hypothesis, or about the probability that random
chance produced the observed data. The p-value is neither.”5
This is because P (extreme result|H0) 6= P (H0|extreme result).

I Observing a p-value ≤ 5% does not mean that the positive finding is
easy to reproduce! 6

As an example, suppose you conduct a study and find a significant p-value of p = 5%. You
try to replicate your positive finding by conducting the exact same study again. What is
your chance to get a significant p-value (≤ 5%) again? To calculate that, you need to know
the true treatment effect “µ1 − µ2”, which you do not know, of course. But what about if
we assume that it is what you have estimated in your (first) study, i.e. x̄1 − x̄0? Only 50%!

5Wasserstein & Lazar. "The ASA statement on p-values: context, process, and purpose." Am. Stat. 70.2 (2016): 129-133.
6Pawel & Schwab (2020), Significance 17(6), 10-11; Goodman (1992) Statistics in Medicine, 11(7), 875–879.
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Normality assumption
Normality should be checked for each sample separately (using histograms
or qqplots).

Protein level (%)
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But, when sample sizes n1 and n2 are both large enough (say > 15)
normality is not important7.
However, skewed data can be transformed to facilitate the
interpretation and reduce the influence of outliers (this should be
pre-specifified).

7due to the central limit theorem.
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Confidence interval of the difference

Good practice: report an estimate of the mean difference and a 95%
confidence interval.

x̄1 − x̄2 ± tdf · s.e.(x̄1 − x̄2)

I df : degree of freedom ≈ n1 + n2 − 2 when n1 = n2 and s1 = s2.
I tdf ≈ 1.96 when n1 and n2 are large (say ≥ 15).
I software will take care.

Case: mean difference of -0.22 (CI-95% = [0.05;0.38]; p-value = 0.011).
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Confidence interval vs p-value

I if 0 is
{

in
not in

}
the CI, then the difference

{
is not
is

}
significant.

I We can tell if the test is significant from looking at the CI, but we can’t
guess the CI from knowing the p-value.

I A wide 95% that includes 0 suggests “lack/absence of evidence”.
I A narrow 95% that includes 0 suggests “evidence of absence” of difference

(or existence of a “tiny one”, if any).

Difference in mean

●

●

0

Altman & Bland (1995). Statistics notes: Absence of evidence is not evidence of absence. BMJ, 311(7003), 485.

24 / 63



u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f b i o s t a t i s t i c s

Confidence interval vs p-value

I if 0 is
{

in
not in

}
the CI, then the difference

{
is not
is

}
significant.

I We can tell if the test is significant from looking at the CI, but we can’t
guess the CI from knowing the p-value.

I A wide 95% that includes 0 suggests “lack/absence of evidence”.
I A narrow 95% that includes 0 suggests “evidence of absence” of difference

(or existence of a “tiny one”, if any).

Difference in mean

●

●

0

Altman & Bland (1995). Statistics notes: Absence of evidence is not evidence of absence. BMJ, 311(7003), 485.

24 / 63



u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f b i o s t a t i s t i c s

Clinical relevance versus statistical significance

Clinical relevance 6= statistical significance !

Source: Maltenfort & Díaz-Ledezma. Statistics In Brief: Minimum Clinically Important Difference–Availability of Reliable Estimates.
Clinical Orthopaedics and Related Research 475(4):p 933-946, 2017.
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Appendix: Need for CIs (1/2)

"Fundamental Concepts for New Clinical Trialists", by Evans and Ting (2016), pages 216–217, Section 8.3.4.2 "Need for CIs".
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Appendix: Need for CIs ( 2/2)

EMA scientific guidelines “Points to consider on switching between superiority and non-inferiority” (2000),
https://www.ema.europa.eu/en/documents/scientific-guideline/
points-consider-switching-between-superiority-and-non-inferiority_en.pdf
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Appendix: CIs for evidence of “clinical equivalence”

E.g.: ∆= 5 mmHg in blood pressure

EMA scientific guidelines “Points to consider on switching between superiority and non-inferiority” (2000),
https://www.ema.europa.eu/en/documents/scientific-guideline/
points-consider-switching-between-superiority-and-non-inferiority_en.pdf
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Appendix: CIs for evidence of “clinical non-inferiority”

E.g.: ∆= 5 mmHg in blood pressure

EMA scientific guidelines “Points to consider on switching between superiority and non-inferiority” (2000),
https://www.ema.europa.eu/en/documents/scientific-guideline/
points-consider-switching-between-superiority-and-non-inferiority_en.pdf
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Two versions of the two-sample t-test

“Classical” Student’s t-test (not recommended):
I Original t-test, described in many basic textbooks.
I Additional assumption8 of equal standard deviations σ1 = σ2.
I Different formula for s.e. and degrees of freedom (df = n1 +n2− 2).

Welch’s t-test (the presented one, recommended):
I No assumption of equal standard deviations: less restrictive.
I Formula for degrees of freedom more complicated, but software take

care.
I Default in R.

8Note: with equal group sizes, i.e. when n1 = n2 , which is typically the case in experimental research, then this assumption is not
important at all. See e.g. Julious SA. Why do we use pooled variance analysis of variance?. Pharmaceutical Statistics. 2005 Jan;4(1):3-5.
30 / 63



u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f b i o s t a t i s t i c s

One-sample example

Research question:
Is the mean protein level of the milk similar at 1 and 12 weeks after
calving, for cows fed with Barley?

Data (t1 − t12):

Cow Diff
B01 -0.08
B02 -0.03
B03 1.06
B04 0.48
B05 0.49
B06 0.74

etc...

Null hypothesis:
The mean difference between protein level
at 1 and 12 weeks is zero (H0 : µ = 0).

One-sample test because only one group of
(n =25) cows (barley).
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One-sample t-test

The t-test statistic measures the distance between the sample mean and
the assumed population mean µ under H0 in units of the standard error:

t = x̄− µ
s/
√
n

If |t| is large, the data “contradict” the null hypothesis.

p-value = P(|T | > |t|)

where T is a random variable that follows the t-distribution with n− 1
degrees of freedom.

I similar to the computation of the confidence intervals for the mean.
I p-value ≤ 5% ⇐⇒ µ not in 95% CI.
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One-sample t-test: example results

I x̄ = 0.46
I n = 25
I s = 0.31
I t = 7.43
I p-value= P(|T | > |t|) < 0.001 (for H0 : µ = 0)

We conclude that there is a significant difference in mean protein level of
the milk at 1 and 12 weeks after calving, for cows fed with barley
(p<0.001).

Reminder (see Lecture 1):
we compute the 95% CI as x̄± tn−1 · s/

√
n, which here leads to

[0.33;0.58] (and does not inlclude 0).

Note: this one-sample t-test corresponds to a paired t-test9.

9two samples of observations (two times) paired by cow. More on Lecture 8.
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Outline/Intended Learning Outcome (ILOs)

Hypothesis testing
ILO: to describe the principles and logic of hypothesis testing

One and two sample tests for continuous responses: t-test
ILO: to identify when, how and why to use a t-test
ILO: to define a p-value and contrast its use with that of a confidence interval

Power and Sample size calculation
ILO: to identify why and how to make power and sample size calculations
ILO: to analyse their strengths and limitations

Multiple testing
ILO: to describe the multiple testing problem and employ basic remedies

Nonparametric test: Wilcoxon
ILO: to contrast pros and cons of Wilcoxon vs t-test
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Power

The power of a test is the chance of obtaining a significant result when
the null hypothesis is indeed false.

I Power = 1− β, i.e. 1 minus the risk of a “false negative” result (β),
i.e. 1 minus risk of Type-II error.

I Although we can control the type-I error (α = 5%) by appropriately
computing the p-value and comparing it to 5%, the computation
does not control the risk of type-II error, β.

I The power of a two-sample t-test depends on:
I sample sizes n1 and n2 (the larger the better).
I standard deviations σ1 and σ2 (i.e. variability, the smaller the better).
I difference in mean δ = |µ1 − µ2| (i.e. effect size, the larger the better).
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i.e. 1 minus risk of Type-II error.

I Although we can control the type-I error (α = 5%) by appropriately
computing the p-value and comparing it to 5%, the computation
does not control the risk of type-II error, β.

I The power of a two-sample t-test depends on:
I sample sizes n1 and n2 (the larger the better).
I standard deviations σ1 and σ2 (i.e. variability, the smaller the better).
I difference in mean δ = |µ1 − µ2| (i.e. effect size, the larger the better).
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Textbook power formula (approximation for two-sample t-test)

δ = (z1−β − zα/2)

√
σ2

1
n1

+ σ2
2
n2

I zα/2 = −1.96 for α = 5%.10

I z1−β = 0.84 and 1.28 for 1− β = 80% and 90%.
I maximal power when n1 = n2, for a given total sample size n1 + n2,

when σ1 = σ2.

Useful for computing:
I Sample size: n1 = n2 for given “guesses” of σ1, σ2 and δ and

desired 1− β and α.
I Power for a given budget/sample size: 1− β for “guesses” of σ1, σ2

and δ and desired n1, n2 and α.
I Least detectable difference: δ for given n1 and n2, “guesses” of σ1

and σ2 and desired α and minimal power 1− β.
10where zγ is the γ-quantile of a standard normal distribution.
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Use a software ! (e.g. R)

Often it is “good enough” to assume σ1 = σ2 and then sensible to
choose n1 = n2. Then standard software can be used, e.g. with R11:

power.t.test(power = .80, delta = 0.5)

Two-sample t test power calculation

n = 63.76576
delta = 0.5

sd = 1
sig.level = 0.05

power = 0.8
alternative = two.sided

NOTE: n is number in *each* group

I n1 = n2 = 64 subjects needed to detect 1/2 sd difference12.

11slightly more precise calculation performed than using the textbook formula.
12Note: it holds for whatever σ1 = σ2 and δ, as long as δ/σ1, the “signal-to-noise ratio”,

is 1/2.
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Sample size calculation: which difference δ to use?

Principled choices:
I expected/hypothesized difference.
I minimum (clinically) relevant difference.

But small difference are difficult to detect and may require a large
sample size, with consequences on the budget, study length, etc.

Pragmatic choice: smallest difference “disappointing” to overlook.

If this still indicates a too large sample size, then discuss with your
supervisor (try to avoid wasting time/money).
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Which guesses for the standard deviations?

For the calculations, we need a “guess” for the variability in the
outcome13, i.e. σ1, σ2.
I Estimate from previous studies from your research group or

published in the literature (be aware of statistical uncertainty).
I Expert guess (supervisor/senior collaborators).

Recommended practice:
I use several likely values to do several calculations.
I see how changes affect the results and discuss with your

collaborators.
I be conservative (when appropriate).
I consider ethical issues (whenever relevant).

13Thinking about the normal range width (=4σ) can help to guess σ.
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Least detectable difference: sensitivity to σ

Example: my grant (money/time) can finance a sample size of n = 40
(i.e. 20 per group). What is the smallest difference I can hope to show
different from zero, with a decent power (e.g. 80%)?

power.t.test(n=20,sd=1,power=0.80)

Two-sample t test power calculation

n = 20
delta = 0.9091306

sd = 1
sig.level = 0.05

power = 0.8
alternative = two.sided

NOTE: n is number in *each* group
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Power: sensitivity to σ

Example: an initial calculation suggests n = 74 (i.e. 37 per group), for
the minimum difference δ = 2 that we aim to show, with our best expert
guess σ = 3 (with 80% power). But what does the power become if we
over or underestimate σ by up to 50%?

power.t.test(sd=4,delta=2,n=37)

Two-sample t test power calculation

n = 37
delta = 2

sd = 4
sig.level = 0.05

power = 0.5642987
alternative = two.sided

NOTE: n is number in *each* group
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41 / 63



u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f b i o s t a t i s t i c s

Outline/Intended Learning Outcome (ILOs)

Hypothesis testing
ILO: to describe the principles and logic of hypothesis testing

One and two sample tests for continuous responses: t-test
ILO: to identify when, how and why to use a t-test
ILO: to define a p-value and contrast its use with that of a confidence interval

Power and Sample size calculation
ILO: to identify why and how to make power and sample size calculations
ILO: to analyse their strengths and limitations

Multiple testing
ILO: to describe the multiple testing problem and employ basic remedies

Nonparametric test: Wilcoxon
ILO: to contrast pros and cons of Wilcoxon vs t-test

42 / 63



u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f b i o s t a t i s t i c s

A multiple testing example

Are jelly beans associated
with acne?

(cartoon from: https://xkcd.com/882/)
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I First test is not significant.
I Move on to other tests.
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I Five more tests are not significant.
I Move on to other tests.
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I Four more tests are not significant, but one is significant (Green!).
I Move on to other tests.
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I Five more tests are not significant.
I Stop testing.
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I Conclude.

Is the conclusion correct? Why?
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Multiple testing issue

I The risk of type-I error of each test is controlled (usually at 5%).
I i.e. thinking of each hypothesis test separately, each corresponding

to a specific research question and specific study, the risk of false
positive finding is controlled for each of them.

I But, if we consider them part of the same study and consider that
we have a finding if at least one test is significant, then we do not
control the risk of false positive finding.

I i.e. the risk of having at least one significant p-value although
there is no association is not controlled.

Family-wise error rate (FWER): probability of making one or more
false discoveries when performing multiple hypotheses tests
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FWER in the example
We have computed K = 16 different p-values. For simplicity, we assume
that the data to compute each of them are different (independent).

FWER = P(at least one of the K p-values are significant)
= 1− P(none of the K p-values are significant)
= 1− P(1st is not significant)× · · · × P(K-th is not significant)
= 1− (1− 0.05)× · · · × (1− 0.05) (as no association exists)

= 1− (1− 0.05)K

K 1 2 3 4 5 10 16 20 50
FWER (%) 5 10 14 18 23 40 56 64 92

Cartoon: 56% chance of at least one significant false finding if no
association exists.
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FWER control
When we plan to compute K ≥ 1 p-values, we can adjust their computation to
control the FWER.

Bonferroni adjustment:
I adjusted p-value= K× original p-value
I adjusted significance level = α/K.14

Intuition:
I equally share/split the original significance level α between the tests.
I the “total” risk of error (FWER) cannot exceed the sum of the errors of

each test.

Remarks:
I always works: no specific assumption.
I but only works if we prespecify the analysis with K tests.15

14Can be used to compute adjusted confidence intervals.
15Not allowed to keep testing until one significant result pops up and then multiply all p-values by the number of tests performed.

51 / 63



u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f b i o s t a t i s t i c s

FWER control
When we plan to compute K ≥ 1 p-values, we can adjust their computation to
control the FWER.

Bonferroni adjustment:
I adjusted p-value= K× original p-value
I adjusted significance level = α/K.14

Intuition:
I equally share/split the original significance level α between the tests.
I the “total” risk of error (FWER) cannot exceed the sum of the errors of

each test.

Remarks:
I always works: no specific assumption.
I but only works if we prespecify the analysis with K tests.15

14Can be used to compute adjusted confidence intervals.
15Not allowed to keep testing until one significant result pops up and then multiply all p-values by the number of tests performed.

51 / 63



u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f b i o s t a t i s t i c s

Prespecification matters

Concluding significance without prespecification is like drawing a
dart-board around where the dart lands.
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Bonferroni-Holm adjusted p-values

1. sort the p-values: p(1) ≤ p(2) ≤ · · · ≤ p(K)

2. adjust the first as with Bonferroni, i.e. p̃(1) = K · p(1) and others as

p̃(i) = max
{
p̃(i−1), (K − i+ 1) · p(i)

}
(≈ multiply the 1st by K, the 2nd by K − 1, the 3rd by K − 2,. . . ...)

Remarks:
I same as for Bonferroni (no specific assumption).
I we cannot compute corresponding adjusted significance levels and

adjusted confidence intervals.
I less conservative than Bonferroni, i.e. adjusted p-values are always

smaller.
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Example

We compare 6 doses of treatments (10-60 mg) to placebo (0 mg).

Comparison 60 mg 50 mg 40mg 30mg 20mg 10mg
Original p-value 0.005 0.009 0.1 0.15 0.3 0.6
Bonferroni 0.03 0.054 0.6 0.9 1 1
Bonferroni-Holm 0.03 0.045 0.4 0.45 0.6 0.6

Note: we “truncate” the p-value to 1.
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FWER vs FDR (1/2)

Controlling the FWER is important in “confirmatory” studies.
I When there is a clear prespecified scientific hypothesis and the aim

is to “prove” it. E.g. clinical trial.

Controlling the FDR is often better suited in “exploratory” studies.
I When nice data are available, but no specific research questions /

scientific hypotheses. You want to look at many associations and
report findings which are “likely enough” true findings. E.g.
Genomics.

False discovery rate (FDR): expected proportion of falsely rejected
hypotheses among the rejected hypotheses.
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Digression: confirmatory versus exploratory research

“It is essential to distinguish between exploratory and confirmatory research, and they
are equally important to the scientific enterprise. Finding the questions to ask is at
least as crucial as answering them, if not more so. But when the two concepts get
confused, and the two worlds collide, thea fallout can be disastrous”16

16Schwab & Held. "Different worlds Confirmatory versus exploratory research." (2020) Significance, 8:9.
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FWER vs FDR (2/2)

Hypotheses Not rejected Rejected Total
True U V K0
False T S K −K0
Total W R K

I FWER = P(V > 0)
I FDR = E(V/R) (where here we set V/R = 0 if R = 0).
I controlling the FDR is less conservative than controlling the FWER:

p-values adjusted to control the FDR are smaller than those
adjusted to control the FWER.

I See Benjamini-Hochberg (1995) method to control FDR at e.g. 5%.
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Multiple testing corrections: none can be fine/best !

It is not always needed, or even possible, to adjust for multiple testing.

“In exploratory studies without prespecified hypotheses there is typically no
clear structure in the multiple tests, so an appropriate multiple test adjustment
is difficult or even impossible. Hence, we prefer that data of exploratory studies
are analysed without multiplicity adjustment. However, ‘significant’ results
based on exploratory analyses should be clearly labelled as exploratory results.
To confirm these results, the corresponding hypotheses have to be tested in
confirmatory studies.”

Bender & Lange. (1999). Multiple test procedures other than Bonferroni’s deserve wider use. BMJ, 1999, 318:600.
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Outline/Intended Learning Outcome (ILOs)

Hypothesis testing
ILO: to describe the principles and logic of hypothesis testing

One and two sample tests for continuous responses: t-test
ILO: to identify when, how and why to use a t-test
ILO: to define a p-value and contrast its use with that of a confidence interval

Power and Sample size calculation
ILO: to identify why and how to make power and sample size calculations
ILO: to analyse their strengths and limitations

Multiple testing
ILO: to describe the multiple testing problem and employ basic remedies

Nonparametric test: Wilcoxon
ILO: to contrast pros and cons of Wilcoxon vs t-test
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Wilcoxon-Mann-Whitney Test: motivation

Limitation of the two-sample t-test:
I Data should be normally distributed in each group
I OR the sample size of each group should be large.

Challenge:
What if we want a reliable computation of a p-value to compare two
groups, with small sample data not necessarily normally distributed?

A solution:
We can use a rank-based test17: the Wilcoxon-Mann-Whitney test18. It
provides “exact” p-values.19

Another advantage of Wilcoxon is its “robustness” to outliers, which
might be convenient.

17also often called “non-parametric” test
18sometimes just called “Wilcoxon” or “Mann-Whitney” test.
19exact means that p-values are always valid (i.e. no “large n” approximation.)
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Case: gene expression

I Research question:
Is the length of the candidate gene NACP
associated with the level of expressed alpha
synuclein mRNA, which has been shown to be
associated with alcoholism?

I Outcome: level of expressed alpha synuclein
mRNA.

I Compared groups: “short” vs “long” allele
length (sum score built from additive dinucleotide repeat length categorized into

groups).

Challenges:
I small sample size n = 24 (short) + 15 (long)
I outcome not known to be normally distributed.
I aim to confirm that this gene is linked to alcohol dependence.
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Wilcoxon test: example

p-value=0.002
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Why using the ranks:
If the two groups are similar, then the ranks should be equally distributed between
the two groups. Whatever the distribution of the observations in each group, a
randomly drawn blue observation should be larger than a randomly drawn red
observation in about 50% of the draws. (Here P(X > Y )= 79.2 %)62 / 63
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Wilcoxon test: practical limitation

When a significant difference is shown we can conclude that the
distribution in the two groups are different, but nothing else...
which can be frustrating.

Common error/overinterpretation: conclude to a difference in median.

We cannot estimate a nice matching 95% CI to quantify the “effect size”.
By contrast, to complement the p-value of a t-test we can provide a
matching 95% CI of the difference in mean.

Hence unless an “exact” p-value computation is really needed, using a
t-test, possibly after having transformed the data, can often be
preferred20.

20See e.g. le Cessie, Goeman, and Dekkers. "Who is afraid of non-normal data? Choosing
between parametric and non-parametric tests." European Journal of Endocrinology (2020).
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