DEPARTMENT OF BIOSTATISTICS

Day 2: Hypothesis testing, tests for
continuous responses, multiple testing

Paul Blanche

Section of Biostatistics, University of Copenhagen

February 26, 2025



UNIVERSITY OF COPENHAGEN DEPARTMENT OF BIOSTATISTICS

Outline/Intended Learning Outcome (ILOs)

Hypothesis testing
ILO: to describe the principles and logic of hypothesis testing
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Case: cow milk data

» Research question:
Should cows be fed with Barley or Lupin, to
produce the best milk?

» Outcome:
protein level of the milk (%) at 12 weeks after
calving.

Statistical aim: provide a yes/no answer about the population
supported by the observed data (sample) while controlling the risks of a
“false finding”, via a Hypothesis test.!

e INote: important complementary information is given by the confidence interval of the eff.
size. It will be emphasized shortly. (]
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Research question and Null hypothesis

» A hypothesis test aims to answer a very precise & specific research
question.

Case: Is there a difference in (population) mean level of protein
between cows fed with lupin and barley, at 12 weeks?

» The null hypothesis Hg of the test should reflect it and state the
opposite of what you aim to prove.

Scientific hypothesis: there is a difference.
Null hypothesis: there is no difference.

Choosing the opposite is important to appropriately control the risk
of wrong conclusion.
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Hypothesis testing and risks of false conclusions

Type | Error Type Il Error

y\,\
Tl
You're

pregnant! ‘ You're not

= pregnant!

Case:
» Type-l error: conclude a difference although it does not exist.

False positive finding

» Type-ll error: do not conclude to a difference although it exists.

False negative finding
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Hypothesis testing and risk control

We want to ensure that the risk of wrongly rejecting the null hypothesis
(cv) is small (often 5%), i.e. a small risk of a false scientific finding.

Reasoning: the data need to be convincing enough to support the (new)
research finding.

Limitation: it might be difficult to have enough data to support a (new)
finding (— power).
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The logic of hypothesis testing

. Assume that the data have been generated in a world in which the

null hypothesis is true.

. Under this assumption, calculate how unlikely it is to obtain some

results that contradict the null hypothesis as least as much as
those obtained with your data (i.e., compute the p-value).

. Reject the null hypothesis if this is unlikely ‘enough'’.

Similar to a proof by contradiction.

Computation in step 2. depends on the type of observed data.
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Outline/Intended Learning Outcome (ILOs)

One and two sample tests for continuous responses: t-test
ILO: to identify when, how and why to use a t-test
ILO: to define a p-value and contrast its use with that of a confidence interval
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Case: cow milk data
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Data from n = 25 (Barley)+27 (Lupin) cows:

protein

3.
.04
.07
.92
.29
.18

W wWwN ww

etc...

28

Diet
lupins
barley
barley
barley
lupins
lupins

‘ Barley Lupin

Mean (SD): | 3.43 (0.31) 3.21 (0.27)

» s the difference observed in the data sample large enough to
conclude to a difference in the population?
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First approach (not optimal for testing)

Comparison of 95% confidence intervals:
» Lupin: [3.11;3.32]
> Barley: [3.30;3.56]

m Barley
= Lupin

I T T 1
3.0 3.2 3.4 3.6

Protein level (%)

We cannot conclude on the significance of the difference
(see slides lecture 1).

But the two Cl can be interesting to report anyway. @
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A better approach

Compute:

» p-value for the difference in mean.

» confidence interval for the difference in mean.

11/63
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Two-sample t-test (1/2)

Model assumptions: (1 & 2 are important, 3 not always)
1. The two samples are independent (no pairing).
2. Observations from each sample are independent.

3. Observations are normally distributed.
To test the null hypothesis , i.e. the population means are
the same in the two populations, we compute the t-statistic.

f_ T
N s.e.(i"l — (EQ)

where the standard error is s.e.(Z1 — Z2) = \/$7/n1 + $3/na.

The value t quantifies how large the (sample) difference (z1 — 72) is

and is used to compute a p-value.

relative to the amount of information provided by the data (s.e.(z1 — J;g)E

12/63

ATISTICS
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Appendix: t-statistic intuition (1/3)

» For given standard deviations s; and sz and sample sizes n; and na,

the larger the difference in mean 1 — Z2 and the larger the t-statistic
(absolute values).

K -%,|=05 [ -%,|=26
ItI=11 |t]=56

RS

£

O

» It makes sense: the right plot is more convincing than there is a difFeren@
e In mean than the left plot.
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Appendix: t-statistic intuition (2/3)

» For given standard deviations s; and s2 and difference in mean ;1 — o,

the larger the sample sizes n; and no and the larger the t-statistic
(absolute values).

n,=10 n,=40
n, =10 n,=40
It]=11 [t1=23
. cem
. . - e
o o
§ & N ©
2 Y & In
% F~
. S
. -
. e

» It makes sense: the right plot is more convincing that there is a difFeren@
e In mean than the left plot.
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Appendix: t-statistic intuition (3/3)

» For given difference in mean ;1 — T2 and sample sizes 1 and na,

the smaller the standard deviations s; and s2 and the larger the t-statistic
(absolute values).

5;=1 5,=0.3
§=11 5,204
It]=11 [t1=33
.
.
. .
. .
$
.
14 2 &
2 s
% .
° .
o
.

» It makes sense: the right plot is more convincing than there is a difFeren@
e In mean than the left plot.
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Two-sample t-test (2/2)

The key idea to use the t-statistics is that under the model assumption, it
follows a specific distribution?> whatever the value of the (population)
means (p1, p2) and standard deviations (o1, 02) in each group.

Hence we can assume p1 = o and calculate how unlikely it is to obtain
a t value that contradicts the null hypothesis as least as much as that
obtained with your data, that is, we can compute a p-value.

The larger |¢| the more the data contradict H : p; = po.

p-value= P(|T| > |t
t-distribution.

), where T is a random variable that follows the

e %the t-distribution, aka Student’s distribution, which depends on the two sample sizes 1 &
ng; already encountered in Lecture 1. [ ]
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The p-value (1/2)

Informal definition:
The p-value is “the probability of seeing a result as extreme as your
observed result, when the null model is true.” 3

> “result”= test statistic, i.e., a single value that (“cleverly”)
summarizes the data.

> “extreme”= unlikely/unexpected.

Interpretation:

1. If the p-value is small the data are at odds with the null
hypothesis* and the finding is said to be statistically significant.

2. If the p-value is large, the finding is said to be not statistically
significant.

. 3Westfa|l & Henning. Understanding advanced statistical methods. CRC Press, 2013 (page 405). .
4

It
i.e. either the null hypothesis is not true or a very rare event has occurred. [ J



UNIVERSITY OF COPENHAGEN DEPARTMENT OF BIOSTATISTICS

The p-value (2/2)

Interpretation:

3. We imagine a large number of repetitions of the study with the null
hypothesis being true and define the p-value as the proportion of
these studies which provide less support for the null hypothesis than
the data actually observed.

Recommendations:

» Traditionally the value p=5% has been used to divide “significant”
from “non-significant” results, but good practice is to report the
actual p-value.

» The choice of the threshold to claim significance (often p=5%)
should be prespecified.

18/63
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p-value and strength of evidence

The smaller the p-value, the
stronger the evidence against

the null hypothesis.

P-value

1

Weak evidence against

0.1

Increasing evidence against
the null hypothesis with
0.01 A
decreasing P value

0.001
Strong evidence against
the null hypothesis

0.0001

19/63
Figure 8.2 in Kirkwood & Sterne (2003), Essential medical statistics, 2nd edition.
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Case: Two-sample t-test

vVvyVvyvVvyyvyYyvyy

Tp =343, o =3.21

T1 — T =0.22

ny = 25, ng =27

s1 = 0.31, s =0.27

s.e.(z1 — x2) = 0.081

t = 2.66

p-value= P(|T| > |¢|)=0.011

DEPA

RTMENT

OF BIOSTATISTICS

We conclude that there is a significant difference in mean protein level of
the milk between cows fed with barley and lupin (p=0.011).
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Don’t misinterpret p-values!

Widespread misunderstandings called for clarifications:

» The p-value is not the probability of H being true.

“Researchers often wish to turn a p-value into a statement about
the truth of a null hypothesis, or about the probability that random
chance produced the observed data. The p-value is neither.”

This is because P (extreme result|Ho) # P(Ho|extreme result).

. 5Wasserstein & Lazar. "The ASA statement on p-values: context, process, and purpose." Am. Stat. 70.2 (2016): 129-133. .
Pawel & Schwab (2020), Significance 17(6), 10-11; Goodman (1992) Statistics in Medicine, 11(7), 875-879. [ ]
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Don’t misinterpret p-values!

Widespread misunderstandings called for clarifications:

» The p-value is not the probability of H being true.

“Researchers often wish to turn a p-value into a statement about
the truth of a null hypothesis, or about the probability that random
chance produced the observed data. The p-value is neither.”

This is because P (extreme result|Ho) # P(Ho|extreme result).

» Observing a p-value < 5% does not mean that the positive finding is
easy to reproduce! ©

As an example, suppose you conduct a study and find a significant p-value of p = 5%. You
try to replicate your positive finding by conducting the exact same study again. What is
your chance to get a significant p-value (< 5%) again? To calculate that, you need to know
the true treatment effect “11 — p2", which you do not know, of course. But what about if
we assume that it is what you have estimated in your (first) study, i.e. Z; — Zo?

5Wasserstein & Lazar. "The ASA statement on p-values: context, process, and purpose." Am. Stat. 70.2 (2016): 129-133. .

21/6
6 pawel & Schwab (2020), Significance 17(6), 10-11; Goodman (1992) Statistics in Medicine, 11(7), 875-679. °
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Don’t misinterpret p-values!

Widespread misunderstandings called for clarifications:

» The p-value is not the probability of H being true.

“Researchers often wish to turn a p-value into a statement about
the truth of a null hypothesis, or about the probability that random
chance produced the observed data. The p-value is neither.”

This is because P (extreme result|Ho) # P(Ho|extreme result).

» Observing a p-value < 5% does not mean that the positive finding is
easy to reproduce! ©

As an example, suppose you conduct a study and find a significant p-value of p = 5%. You
try to replicate your positive finding by conducting the exact same study again. What is

your chance to get a significant p-value (< 5%) again? To calculate that, you need to know
the true treatment effect “11 — p2", which you do not know, of course. But what about if
we assume that it is what you have estimated in your (first) study, i.e. Z; — Zo? Only 50%!

5Wasserstein & Lazar. "The ASA statement on p-values: context, process, and purpose." Am. Stat. 70.2 (2016): 129-133. .

21/6
6 pawel & Schwab (2020), Significance 17(6), 10-11; Goodman (1992) Statistics in Medicine, 11(7), 875-679. °
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Normality assumption
Normality should be checked for each sample separately (using histograms
or qqplots).

10

o

= Barley
Lupin

IS

Frequency

N

25 3.0 35 4.0

Protein level (%)

But, when sample sizes n; and ny are both large enough (say > 15)
normality is not important’.

However, skewed data can be transformed to facilitate the

interpretation and reduce the influence of outliers (this should be @
pre-specifified). )

22763

"due to the central limit theorem. [ ]
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Confidence interval of the difference

Good practice: report an estimate of the mean difference and a 95%
confidence interval.

.i‘l — .f'g + tdf . 8.6.(531 — Cfg)

» df: degree of freedom = n; + ny — 2 when n; = ny and s; = so.
» ¢4 ~ 1.96 when ny and ny are large (say > 15).

» software will take care.

Case: mean difference of -0.22 (CI-95% = [0.05;0.38]; p-value = 0.011).

n/6
[ ]
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Confidence interval vs p-value

> if0is { m_ } the Cl, then the difference { |s_n0t } significant.
not in IS

» We can tell if the test is significant from looking at the CI, but we can't
guess the CI from knowing the p-value.
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Confidence interval vs p-value

> if0is { m_ } the Cl, then the difference { |s_n0t } significant.
not in IS

» We can tell if the test is significant from looking at the CI, but we can't
guess the CI from knowing the p-value.

> A wide 95% that includes 0 suggests “lack/absence of evidence”.

> A narrow 95% that includes 0 suggests “evidence of absence” of difference
(or existence of a “tiny one", if any).

—_—

T
0

Difference in mean

Altman & Bland (1995). Statistics notes: Absence of evidence is not evidence of absence. BMJ, 311(7003), 485. @

/63
[ ]



Clinical relevance versus statistical significance

TMENT OF B

Fig. 1 A comparison of clinical
and statistical significance is
presented. The vertical line indi-
cates the “no change” region of
a measured effect. The horizon-
tal distance from the line
measures strength of the effect.
Any confidence interval cross-
ing that vertical line is not
statistically significant, and any
confidence interval near that
line may not be clinically
significant.

——Clinical and statistical
——Statistical, but definitely not clinical

~—— Uncertain clinical o statistical
——Not statistical, definitely not clinical

Clinical relevance # statistical significance !

Source: Maltenfort & Diaz-Ledezma. Statistics In Brief: Minimum Clinically Important Difference—Availability of Reliable Estimates.

Clinical Orthopaedics and Related Research 475(4):p 933-946, 2017

25/63
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Appendix: Need for Cls (1/2)

p-Values are only one tool for assessing evidence. When reporting the results
of a clinical trial, CIs should always be reported to identify effect sizes that
can be “ruled out” (i.e., effect sizes that are inconsistent with the data). If a
p-value is significant, implying an effect, then the next natural question is
“what is the effect?” CIs directly address this question. If a p-value is not
significant, implying that you were not able to rule out the possibility of “no
effect,” then the next natural question is “what effects could be ruled out?”

Cls again directly address this question. The under-reporting of Cls is a seri-
ous flaw in the medical literature.
Cls are not a replacement for p-values but instead should be provided with

p-values. p-values are still very useful tools particularly when assessing
trends and interactions.

"Fundamental Concepts for New Clinical Trialists", by Evans and Ting (2016), pages 216-217, Section 8.3.4.2 "Need for Cls".



MENT OF BI

ITY OF COPENHA

Appendix: Need for Cls ( 2/2)

95%CONFIDENCE INTERVAL
| | | SUPERIORITY SHOWN
p=0.002 ‘ ! | MORE STRONGLY
p=0.05 I I I SUPERIORITY SHOWN
p=02 | } | SUPERIORITY NOT SHOWN
CONTROL 0 NEW AGENT
BETTER BETTER
TREATMENT DIFFERENCE
Figure 1: Relationship between significance tests and confidence intervals

https://wwv.ema.europa.eu/en/documents/scientific-guideline/

EMA scientific guidelines "Points to consider on switching between superiority and non-inferiority” (2000),
points-consider-switching-between-superiority-and-non-inferiority_en.pdf @

/6
[ ]


https://www.ema.europa.eu/en/documents/scientific-guideline/points-consider-switching-between-superiority-and-non-inferiority_en.pdf
https://www.ema.europa.eu/en/documents/scientific-guideline/points-consider-switching-between-superiority-and-non-inferiority_en.pdf

MENT OF

Appendix: Cls for evidence of “clinical equivalence”

E.g.: A= 5 mmHg in blood pressure

Q—|——| EQUIVALENCE SHOWN

| | } EQUIVALENCE NOT SHOWN

-A +A

CONTROL 0 NEW AGENT
BETTER BETTER
TREATMENT DIFFERENCE

Figure 2: Confidence interval approach to analysis of equivalence trial.

https://www.ema.europa.eu/en/documents/scientific-guideline/

EMA scientific guidelines “Points to consider on switching between superiority and non-inferiority” (2000),
points-consider-switching-between-superiority-and-non-inferiority_en.pdf @

28/63


https://www.ema.europa.eu/en/documents/scientific-guideline/points-consider-switching-between-superiority-and-non-inferiority_en.pdf
https://www.ema.europa.eu/en/documents/scientific-guideline/points-consider-switching-between-superiority-and-non-inferiority_en.pdf

MENT OF

Appendix: Cls for evidence of “clinical non-inferiority”

E.g.: A= 5 mmHg in blood pressure

\ | | NON-INFERIORITY SHOWN

| NON-INFERIORITY NOT
SHOWN

CONTROL 0 NEW AGENT
BETTER BETTER
TREATMENT DIFFERENCE

Figure 3: Confidence interval approach to analysis of non-inferiority trial

https://wwv.ema.europa.eu/en/documents/scientific-guideline/
points-consider-switching-between-superiority-and-non-inferiority_en.pdf

EMA scientific guidelines “Points to consider on switching between superiority and non-inferiority” (2000), E

20/63


https://www.ema.europa.eu/en/documents/scientific-guideline/points-consider-switching-between-superiority-and-non-inferiority_en.pdf
https://www.ema.europa.eu/en/documents/scientific-guideline/points-consider-switching-between-superiority-and-non-inferiority_en.pdf
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Two versions of the two-sample t-test

“Classical” Student’s t-test (not recommended):
» Original t-test, described in many basic textbooks.
» Additional assumption® of equal standard deviations o1 = 0.

> Different formula for s.e. and degrees of freedom (df = ny + ngy —2).

Welch’s t-test (the presented one, recommended):
» No assumption of equal standard deviations: less restrictive.

» Formula for degrees of freedom more complicated, but software take
care.

» Default in R.

10/61 BNote: with equal group sizes, i.e. when 17 — mo, which is typically the case in experimental research, then this assumptiongwt
important at all. See e.g. Julious SA. Why do we use pooled variance analysis of variance?. Pharmaceutical Statistics. 2005 Jan;4(1):3-5@
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One-sample example

Research question:
Is the mean protein level of the milk similar at 1 and 12 weeks after
calving, for cows fed with Barley?

Data (t1 — t12)-
Cow Diff
BO1 -0.08 Null hypothesis:
BO2 -0.03 The mean difference between protein level
BO3 1.06 at 1 and 12 weeks is zero (Hg : i = 0).
B04 0.48
BO5  0.49 One-sample test because only one group of
BO6 0.74 (n =25) cows (barley).
etc... @

31/63



UNIVERSITY OF COPENHAGEN DEPARTMENT OF BIOSTATISTICS

One-sample t-test

The t-test statistic measures the distance between the sample mean and
the assumed population mean p under Hg in units of the standard error:

T—p

" s/yn

If |¢] is large, the data “contradict” the null hypothesis.

t

p-value = P(|T| > |¢|)

where T' is a random variable that follows the t-distribution with n — 1
degrees of freedom.

» similar to the computation of the confidence intervals for the mean.

» p-value < 5% <= notin 95% Cl. %
o

2/63
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One-sample t-test: example results

> x =0.46
> n=25

> s=10.31
> =743
>

p-value= P(|T| > |t|) < 0.001 (for Ho:p=0)

We conclude that there is a significant difference in mean protein level of
the milk at 1 and 12 weeks after calving, for cows fed with barley
(p<0.001).

Reminder (see Lecture 1).
we compute the 95% Cl as & + ¢,,_1 - s/y/n, which here leads to

[0.33;0.58] (and does not inlclude 0).

Note: this one-sample t-test corresponds to a paired t-test®. @
o

" Ytwo samples of observations (two times) paired by cow. More on Lecture 8. [
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Outline/Intended Learning Outcome (ILOs)

Power and Sample size calculation
ILO: to identify why and how to make power and sample size calculations
ILO: to analyse their strengths and limitations

34/63
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Power

The power of a test is the chance of obtaining a significant result when
the null hypothesis is indeed false.
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Power

The power of a test is the chance of obtaining a significant result when
the null hypothesis is indeed false.

> Power =1 — 3, i.e. 1 minus the risk of a “false negative” result (3),
i.e. 1 minus risk of Type-Il error.

> Although we can control the type-l error (v = 5%) by appropriately
computing the p-value and comparing it to 5%, the computation
does not control the risk of type-ll error, (.

» The power of a two-sample t-test depends on:
sample sizes ;1 and na (the larger the better).
standard deviations o1 and o2 (i.e. variability, the smaller the better).
difference in mean § = |1 — p2| (ie. effect size, the larger the better).

35/63
[ ]
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Textbook power formula (approximation for two-sample t-test)

2 2

g g

— 1 2
6= (21—5 o Zoz/2)

ny Up)

> za2 = —1.96 for @ = 5%.1°
> 2, 5 =0.84 and 1.28 for 1 — 3 = 80% and 90%.

» maximal power when n; = no, for a given total sample size ny + ns,
when o1 = o5.

Useful for computing:

» Sample size: n; = ny for given “guesses” of 1, o2 and § and
desired 1 — 3 and a.

> Power for a given budget/sample size: 1 — /3 for “guesses” of o1, o9
and ¢ and desired nq, ny and .

> Least detectable difference: § for given ny and no, “guesses” of Ula
and oy and desired a and minimal power 1 — 3.

- o

where z. is the y-quantile of a standard normal distribution. [ ]
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Use a software | (eg. R)

Often it is “good enough” to assume o1 = o9 and then sensible to
choose n1 = nsy. Then standard software can be used, e.g. with R!!:

power.t.test(power = .80, delta = 0.5)

Two-sample t test power calculation

n = 63.76576
delta = 0.5
sd =1
sig.level = 0.05
power = 0.8

alternative = two.sided

NOTE: n is number in *each* group

» n; = ny = 64 subjects needed to detect 1/2 sd difference’?.

11slightly more precise calculation performed than using the textbook formula. @
12Note: it holds for whatever o1 = o2 and 4, as long as § /o1, the “signal-to-noise ratio”, .

37/63

is 1/2. °
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Sample size calculation: which difference ¢ to use?

Principled choices:
> expected/hypothesized difference.

» minimum (clinically) relevant difference.

But small difference are difficult to detect and may require a large
sample size, with consequences on the budget, study length, etc.

Pragmatic choice: smallest difference "“disappointing” to overlook.

If this still indicates a too large sample size, then discuss with your
supervisor (try to avoid wasting time/money).
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Which guesses for the standard deviations?

For the calculations, we need a “guess” for the variability in the

outcomel3, i.e. o1, 03.

» Estimate from previous studies from your research group or
published in the literature (be aware of statistical uncertainty).

> Expert guess (supervisor/senior collaborators).

Recommended practice:
» use several likely values to do several calculations.

» see how changes affect the results and discuss with your
collaborators.

» be conservative (when appropriate).

» consider ethical issues (whenever relevant).

B MBThinking about the normal range width (=40) can help to guess o. o
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Least detectable difference: sensitivity to o

Example: my grant (money/time) can finance a sample size of n = 40
(i.e. 20 per group). What is the smallest difference | can hope to show

different from zero, with a decent power (e.g. 80%)?

power.t.test (n=20,

Two-sample t

n =
delta =

sd =
sig.level =
power =
alternative =

NOTE: n is number

sd=1,power=0.80)

test power calculation

20
0.9091306
1

0.05

0.8
two.sided

in *each* group

Calculated smallest difference &

Note: textbook formula gives 6 = 2.8 - o - 4/2/20.

0/63
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Example: an initial calculation suggests n = 74 (i.e. 37 per group), for
the minimum difference § = 2 that we aim to show, with our best expert
guess 0 = 3 (with 80% power). But what does the power become if we
over or underestimate o by up to 50%7?

power.t.test(sd=4,delta=2,n=37)

Two-sample

n
delta

sd
sig.level
power
alternative

t

test power calculation

37

2

4

0.05
0.5642987
two.sided

NOTE: n is number in *each* group

Note: textbook formula gives z1 _ g = (2/0) - (V37/ V2) — 1.

0.25, -0.52 for 1 — 3 =95, 90, 80, 60 and 30%, respectively.

41/63
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Assumed o

96 and tables and software give z _ g = 1.64, 1.28, 0 34,®
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Outline/Intended Learning Outcome (ILOs)

Multiple testing

ILO: to describe the multiple testing problem and employ basic remedies
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A multiple testing example

JELY BEANS
CAUSE ACNE!
SCENTISTS!
WEST]G:”E;R Are jelly beans associated
L ! with acne?
... FINE,

(cartoon from: https://xkcd.com/882/)
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WE FOUND &g THAT SETILES THAT,
LINK BETW T HEAR IT5 ONLY
JELLY BEANS PO A CERTAN COLOR
AO¥E (P > 005 THAT CAUSES 1T

SCJENT STS)
Hrlllma\nﬁ'

@k

» First test is not significant.

» Move on to other tests.

DEPARTMENT OF BIOSTATISTICS
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WE FOUND NO WE FOUND NO WE FouND NG WE FOUND NO WE FOUND NO
LINK BETWEEN LINK GETWJEEN LINK GETWEEN LINK BETWEEN LINK BETWEEN
PURPLE JELLY BROWN JELY Pin. JELLY BLWE JEWy TEAL JELLY
BEANS AND ANE ﬁzmﬁ.moams BE%ums BEFAMS AHD ANE BEANS AND ANE
(p>0.05) P>&0$) p)O.os) (p>005) (p>005)

» Five more tests are not significant.

» Move on to other tests.
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WE FOUNDNO WE FOUND NO WE FOUNDNO WE FOUND A WE FOUNDNO
LINK BETWEEN LINK GETWEEN LINK GETWEEN LINK BEWEEN LINK BETWEEN
GREY JELLY TAN JELY O JELY GREEN JeL MAUVE JELY
ﬁmﬁmm BEPN&&DPNE BEPN&MDMIE BEANS PoiD ACE Bmﬁmomt
p>oos) p)oos) p>oos) (p<o005) p>oos)

$ik

» Four more tests are not significant, but one is significant (Green!).
> Move on to other tests.
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WE FOUNDNO WE FOUNO NO WE FOUNDNO WE FOUND NO WE FOUND'NO
LINK BETWEEN LINK BETWEEN LINK GETWEEN LINK GETWEEN LINK BEWEEN
BEIGE JELLY LIAC JELY BLACK JELY PEPCH JELLY ORANGE JELLY
ﬁm:ﬁmomdt aeabwm BEMMDRCHE BEFANS PND ACIE. | | BERNS AHD ACNE
p>oos) p)oos) p>oos) (p>0.05) (p>o005)
/ /

» Five more tests are not significant.

> Stop testing.
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» Conclude.

Is the conclusion correct? Why? @
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Multiple testing issue

» The risk of type-l error of each test is controlled (usually at 5%).

» i.e. thinking of each hypothesis test separately, each corresponding
to a specific research question and specific study, the risk of false
positive finding is controlled for each of them.

» But, if we consider them part of the same study and consider that
we have a finding if at least one test is significant, then we do not
control the risk of false positive finding.

> i.e. the risk of having at least one significant p-value although
there is no association is not controlled.

Family-wise error rate (FWER): probability of making one or more
false discoveries when performing multiple hypotheses tests

49/63
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FWER in the example

We have computed K = 16 different p-values. For simplicity, we assume
that the data to compute each of them are different (independent).

FWER = P(at least one of the K p-values are significant)
=1- P(none of the K p-values are significant)
= 1 — P(1st is not significant) X - -+ X P(K-th is not significant)
=1—(1-0.05) x---x (1 —0.05) (as no association exists)
=1—(1-0.05~%

K1 2 3 4 5 10 16 20 50
FWER (%) | 5 10 14 18 23 40 56 64 O2

Cartoon: 56% chance of at least one significant false finding if no @

association exists. o
o o
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FWER control

When we plan to compute K > 1 p-values, we can adjust their computation to
control the FWER.

Bonferroni adjustment:
» adjusted p-value= K X original p-value

» adjusted significance level = o/ K.**

. °;4Can be used to compute adjusted confidence intervals. .
ot allowed to keep testing until one significant result pops up and then multiply all p-values by the number of tests performed.
5N llowed to ke i il ignifi I d th Itiply all | by th ber of fi 4 @
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FWER control

When we plan to compute K > 1 p-values, we can adjust their computation to
control the FWER.
Bonferroni adjustment:

» adjusted p-value= K X original p-value

» adjusted significance level = o/ K.**

Intuition:
» equally share/split the original significance level a between the tests.

> the “total” risk of error (FWER) cannot exceed the sum of the errors of
each test.

Remarks:

» always works: no specific assumption.

. . . . 15
» but only works if we prespecify the analysis with K tests.
. °;4Can be used to compute adjusted confidence intervals. .
5 Not allowed to keep testing until one significant result pops up and then multiply all p-values by the number of tests performed. @
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Prespecification matters

Concluding significance without prespecification is like drawing a
dart-board around where the dart lands. @



UNIVERSITY OF COPENHAGEN

DEPARTMENT OF BIOSTATISTICS

Bonferroni-Holm adjusted p-values

1. sort the p-values: p(1) < py < -+ < pri)
2. adjust the first as with Bonferroni, i.e. p(1y = K - p(;) and others as

Di) = max {ﬁ(iq), (K —i+1) 'p(i)}

(~ multiply the 1st by K, the 2nd by K — 1, the 3rd by K — 2,......)

Remarks:
> same as for Bonferroni (no specific assumption).

» we cannot compute corresponding adjusted significance levels and
adjusted confidence intervals.

> less conservative than Bonferroni, i.e. adjusted p-values are always

smaller. @

53/63 .
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Example

DEPA

RTMENT OF BIOSTATISTICS

We compare 6 doses of treatments (10-60 mg) to placebo (0 mg).

Comparison 60 mg 50 mg 40mg 30mg 20mg 10mg
Original p-value | 0.005 0.009 0.1 0.15 0.3 0.6
Bonferroni 0.03 0.054 0.6 0.9 1 1
Bonferroni-Holm | 0.03 0.045 04 0.45 0.6 0.6

Note: we “truncate” the p-value to 1.
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FWER vs FDR (1/2)

Controlling the FWER is important in “confirmatory” studies.

» When there is a clear prespecified scientific hypothesis and the aim
is to “prove” it. E.g. clinical trial.

Controlling the FDR is often better suited in “exploratory” studies.

» When nice data are available, but no specific research questions /
scientific hypotheses. You want to look at many associations and
report findings which are “likely enough” true findings. E.g.
Genomics.

False discovery rate (FDR): expected proportion of falsely rejected
hypotheses among the rejected hypotheses.

55/63 .
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Digression: confirmatory versus exploratory research

Exploratory research Confirmatory research

No hypothesis required/hypothesis can be vague Clear hypothesis required
Generate new hypothesis from data Test a priori hypothesis with new data
High sensitivity desired, i.e. minimising the risk of | High specificity desired, i.e. minimising the risk of
false negatives false positives
Suitable for making new discoveries and finding Suitable for establishing strong evidence and
the unexpected confirming the expected
For example: For example:
Testing of new compounds in mice Assessing the efficacy of a drug in humans

“It is essential to distinguish between exploratory and confirmatory research, and they
are equally important to the scientific enterprise. Finding the questions to ask is at
least as crucial as answering them, if not more so. But when the two concepts get
confused, and the two worlds collide, thea fallout can be disastrous’°

0

Schwab & Held. "Different worlds Confirmatory versus exploratory research." (2020) Significance, 8:9. [ ]

5

%16
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FWER vs FDR (2/2)

Hypotheses  Not rejected Rejected Total

True u \% Ky
False T S K — K
Total W R K

> FWER = P(V > 0)
F.DR - E(V/R) (where here we set V/R = 0 if R = 0).

» controlling the FDR is less conservative than controlling the FWER:
p-values adjusted to control the FDR are smaller than those
adjusted to control the FWER.

» See Benjamini-Hochberg (1995) method to control FDR at e.g. 5%.

v
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Multiple testing corrections: none can be fine/best !

It is not always needed, or even possible, to adjust for multiple testing.

“In exploratory studies without prespecified hypotheses there is typically no
clear structure in the multiple tests, so an appropriate multiple test adjustment
is difficult or even impossible. Hence, we prefer that data of exploratory studies
are analysed without multiplicity adjustment. However, ‘significant’ results
based on exploratory analyses should be clearly labelled as exploratory results.
To confirm these results, the corresponding hypotheses have to be tested in
confirmatory studies.”

Bender & Lange. (1999). Multiple test procedures other than Bonferroni’'s deserve wider use. BMJ, 1999, 318:600

DEPARTMENT OF BIOSTATISTICS
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Outline/Intended Learning Outcome (ILOs)

Nonparametric test: Wilcoxon
ILO: to contrast pros and cons of Wilcoxon vs t-test
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Wilcoxon-Mann-Whitney Test: motivation

Limitation of the two-sample t-test:
» Data should be normally distributed in each group
» OR the sample size of each group should be large.

Challenge:
What if we want a reliable computation of a p-value to compare two
groups, with small sample data not necessarily normally distributed?

A solution:
We can use a rank-based test!”: the Wilcoxon-Mann-Whitney test!®. It
provides “exact” p-values.®

Another advantage of Wilcoxon is its “robustness” to outliers, which
might be convenient.

1 “ "
7 4ls0 often called “non-parametric” test

18sometimes just called “Wilcoxon” or “Mann-Whitney” test. .

60/
exact means that p-values are always valid (i.e. no “large n." approximation.) [ J
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Case: gene expression

» Research question:

Is the length of the candidate gene NACP DNA
associated with the level of expressed alpha Py Py
synuclein mRNA, which has been shown to be MMW
associated with alcoholism? l o l

» Qutcome: level of expressed alpha synuclein bl aiill
mRNA. [ o]

» Compared groups: “short” vs “long"” allele &:’ %

|ength (sum score built from additive dinucleotide repeat length categorized into
groups) .

Challenges:
» small sample size n = 24 (short) + 15 (long)
» outcome not known to be normally distributed.

» aim to confirm that this gene is linked to alcohol dependence. @
[
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Wilcoxon test: example

p-value=0.
64 . _ o
. . @
.
< .
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short (n=24) long (n=15)
Allele length

Why using the ranks:

If the two groups are similar, then the ranks should be equally distributed between
the two groups. Whatever the distribution of the observations in each group, a
randomly drawn blue observation should be larger than a randomly drawn red
BBservation in about 50% of the draws. (Here P(X > Y)= 79.2 %)

002
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Wilcoxon test: practical limitation

When a significant difference is shown we can conclude that the
distribution in the two groups are different, but nothing else...
which can be frustrating.

Common error/overinterpretation: conclude to a difference in median.

We cannot estimate a nice matching 95% Cl to quantify the “effect size".
By contrast, to complement the p-value of a t-test we can provide a
matching 95% Cl of the difference in mean.

Hence unless an “exact” p-value computation is really needed, using a
t-test, possibly after having transformed the data, can often be
preferred®.

205ee e.g. le Cessie, Goeman, and Dekkers. "Who is afraid of non-normal data? Choosing .
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between parametric and non-parametric tests." European Journal of Endocrinology (2020). [
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